Читайте только на Литрес

Книгу нельзя скачать файлом, но можно читать в нашем приложении или онлайн на сайте.

Основной контент книги Fuzzy Arbitrary Order System
Текст PDF

Длительность книги 275 страниц

0+

Fuzzy Arbitrary Order System

Fuzzy Fractional Differential Equations and Applications
авторы
Snehashish Chakraverty,
Smita Tapaswini
Читайте только на Литрес

Книгу нельзя скачать файлом, но можно читать в нашем приложении или онлайн на сайте.

9 911,45 ₽

Начислим

+297

Покупайте книги и получайте бонусы в Литрес, Читай-городе и Буквоеде.

Участвовать в бонусной программе
Подарите скидку 10%
Посоветуйте эту книгу и получите 991,15 ₽ с покупки её другом.

О книге

Presents a systematic treatment of fuzzy fractional differential equations as well as newly developed computational methods to model uncertain physical problems

Complete with comprehensive results and solutions, Fuzzy Arbitrary Order System: Fuzzy Fractional Differential Equations and Applications details newly developed methods of fuzzy computational techniquesneeded to model solve uncertainty. Fuzzy differential equations are solved via various analytical andnumerical methodologies, and this book presents their importance for problem solving, prototypeengineering design, and systems testing in uncertain environments.

In recent years, modeling of differential equations for arbitrary and fractional order systems has been increasing in its applicability, and as such, the authors feature examples from a variety of disciplines to illustrate the practicality and importance of the methods within physics, applied mathematics, engineering, and chemistry, to name a few. The fundamentals of fractional differential equations and the basic preliminaries of fuzzy fractional differential equations are first introduced, followed by numerical solutions, comparisons of various methods, and simulated results. In addition, fuzzy ordinary, partial, linear, and nonlinear fractional differential equations are addressed to solve uncertainty in physical systems. In addition, this book features:

Basic preliminaries of fuzzy set theory, an introduction of fuzzy arbitrary order differential equations, and various analytical and numerical procedures for solving associated problems Coverage on a variety of fuzzy fractional differential equations including structural, diffusion, and chemical problems as well as heat equations and biomathematical applications Discussions on how to model physical problems in terms of nonprobabilistic methods and provides systematic coverage of fuzzy fractional differential equations and its applications Uncertainties in systems and processes with a fuzzy concept Fuzzy Arbitrary Order System: Fuzzy Fractional Differential Equations and Applications is an ideal resource for practitioners, researchers, and academicians in applied mathematics, physics, biology, engineering, computer science, and chemistry who need to model uncertain physical phenomena and problems. The book is appropriate for graduate-level courses on fractional differential equations for students majoring in applied mathematics, engineering, physics, and computer science.

Жанры и теги

Войдите, чтобы оценить книгу и оставить отзыв
Книга Snehashish Chakraverty, Smita Tapaswini и др. «Fuzzy Arbitrary Order System» — читать онлайн на сайте. Оставляйте комментарии и отзывы, голосуйте за понравившиеся.
Возрастное ограничение:
0+
Дата выхода на Литрес:
22 июня 2018
Объем:
275 стр.
ISBN:
9781119004134
Общий размер:
6.9 МБ
Общее кол-во страниц:
275
Издатель:
Правообладатель:
John Wiley & Sons Limited
Аудио
Средний рейтинг 4,2 на основе 896 оценок
Аудио
Средний рейтинг 4,8 на основе 5129 оценок
Аудио
Средний рейтинг 4,6 на основе 975 оценок
Черновик
Средний рейтинг 4,8 на основе 413 оценок
Текст, доступен аудиоформат
Средний рейтинг 4,7 на основе 7075 оценок
Аудио
Средний рейтинг 4,6 на основе 95 оценок
Аудио
Средний рейтинг 4,2 на основе 61 оценок
Текст, доступен аудиоформат
Средний рейтинг 4,8 на основе 1238 оценок
Текст
Средний рейтинг 4,9 на основе 293 оценок
Текст PDF
Средний рейтинг 0 на основе 0 оценок