Читать книгу: «Обеспечение высокого качества литых заготовок современных сложнолегированных жаропрочных никелевых сплавов», страница 2

Шрифт:
Раскисление металла водородом

С термодинамической точки зрения применение водорода для раскисления металла в вакууме не имеет преимуществ по сравнению с его использованием в открытой плавке. На реакцию раскисления

H2(r) + [O] = H2Or, (2)

снижение давления не оказывает влияния и не приводит к смещению равновесия. Однако при помощи водорода удаётся значительно снизить содержание кислорода в металле. Особенностью применения водорода в вакуумных печах является то, что после обдувки или продувки металла водородом снижение давления обеспечивает полное удаление водорода из металла.

Особое значение применение водорода для раскисления имеет при производстве безуглеродистых и низкоуглеродистых сплавов, когда применение углерода не может быть рекомендовано из-за опасности загрязнения металла углеродом. По сравнению с раскислением углеродом раскисление водородом требует большего времени для достижения тех же минимальных концентраций кислорода.

Водород в вакуумной индукционной плавке используется для обдувки поверхности металла или продувки его. В первом случае раскисление идёт только с поверхности ванны, и скорость этого процесса определяется скоростью подвода водорода к поверхности металла, которая имеет малую величину; в случае продувки металла раскисление должно происходить значительно быстрее [2].

Раскисление металлическими раскислителями

Раскисление низкоуглеродистого металла только углеродом в вакууме не даёт возможности получить низкие концентрации кислорода, а применение водорода большей частью не находит места из-за сложности и опасности его использования.

Поэтому применение металлических раскислителей в вакуумных агрегатах продолжает оставаться актуальным.

Отсутствие окислительной атмосферы в вакуумных установках значительно повышает эффективность раскислителей, которые не окисляются кислородом воздуха и шлаком; основная масса присадки попадает в металл и выполняет свою функцию.

В работе [9] было исследовано раскисление железоуглеродистых и железохромистых сплавов марганцем, кремнием, алюминием, миш-металлом, сплавом АМС и алюминием совместно с церием. Присадка Mn и Si не оказывает существенного влияния на снижение содержания кислорода в металле.

При раскислении металла алюминием в первый момент после введения алюминия содержание кислорода заметно снижается. При выплавке сплавов как с 10, так и с 20 % Cr экспериментальные содержания кислорода лежат выше равновесных значений, следовательно, введение алюминия обеспечивает заметное раскисление металла.

В результате раскисления алюминием содержание кислорода в металле составляло 0,002–0,003 % и 0,004–0,005 % для железоуглеродистых и железохромистых сплавов соответственно [2].

Кроме рассмотренных выше механизмов удаления кислорода из металла в вакууме, существует и другой: кислород может удаляться путём испарения летучих субокислов некоторых компонентов. Субокислы – это низшие окислы, обладающие высокой упругостью пара.

Количество оксидов, присутствующих в первичных материалах, может лимитироваться путём выбора поставщиков и условий на получаемые материалы. К сожалению, самые чистые, не содержащие оксиды, материалы могут быстро стать загрязнёнными большим количеством оксидов в зависимости от состава сплава и огнеупорного тигля, содержащего расплав. Химический состав (MgO, AlO3, ZrO2), пористость и реакционная способность материала тигля являются важными факторами.

Оксиды, содержащиеся в материале футеровки, могут взаимодействовать со многими элементами, и впоследствии образовавшийся кислород легко взаимодействует с более устойчивыми оксидами, присутствующими в расплаве. Например:

2Al (расплав) + 3MgO (тигель) → Al2О3 (расплав) + 3Mg (расплав).

Это – типичная ситуация, т. к. большинство промышленных плавок производится в тиглях с магнезитовой набивкой и большинство жаропрочных сплавов содержит алюминий. Оксиды, образующиеся в MgO – тигле, как полагают, более легко агломерируются и удаляются из расплава, если они образуются. Недостатки корундовых и цирконовых тиглей заключаются в разбросе показателей термомеханических свойств и высокой стоимости.

Магний и редкоземельные элементы типа церия или миш-металла также используются для удаления серы. Церий легко формирует сульфоксиды, которые удаляются в шлак.

Магний является одним из весьма активных элементов, вводимых в жаропрочные никелевые сплавы при их рафинировании. Следует указать, что часть магния попадает в жидкий металл при плавке из керамических тиглей (магнезитовых или корундо-магнезитовых). В работе [10] приведены результаты исследований влияния модифицирующей добавки магния на структуру и свойства никелевых сплавов при плавке их в вакуумных индукционных печах.

Автор [10] указывает, что магний заметно снижает поверхностное натяжение сплава ЖСбКП при температуре 1400 и 1500 °С и, следовательно, является поверхностно-активным элементом.

Форма и распределение карбидов титана находятся в такой же зависимости от содержания магния, как и величина поверхностного натяжения металла. В исходном металле до присадки магния карбиды титана преимущественно вытянутые, игольчатые, имеют характер распределения в виде «китайских иероглифов». В результате снижения поверхностного натяжения после присадки магния карбиды становятся мелкими, круглыми, равномерно распределёнными в объёме металла.

Магний заметно снижает диффузионную подвижность атомов при рабочей температуре сплава, что находится в полном соответствии с результатами испытаний на жаропрочность. Исследования микроструктуры сплава ЖСбКП без магния и с магнием показали, что после нагрева при температуре 1000 °С (без приложения нагрузки) в течение 1000 ч в металле с магнием сохраняется более мелкая и тонкая γ’-фаза, чем в металле без магния.

Исследования с использованием электронного микроскопа разрушенных образцов из сплава ЖСбКП без магния и с магнием показали, что магний задерживает коагуляцию γ’-фазы в сплаве при рабочих температуре и напряжении и стабилизирует структуру. Это обеспечивает повышение жаропрочных свойств сплава.

При микроструктурном исследовании после травления в течение 0,3 мин различий в состоянии границ зёрен металла без магния и с магнием не наблюдали. Однако при более продолжительном воздействии реактива границы зёрен в металле с магнием растравились меньше (особенно после травления в течение 90 мин), т. е. границы зёрен в этом случае имели большую химическую устойчивость к воздействию кислот, что в свою очередь указывает на способность магния замедлять диффузионную подвижность атомов по границам зёрен при высокой температуре, т. е. дополнительно упрочнять границы.

В соответствии с работой [10] для получения сплавов с высокими показателями жаропрочности и пластичности в металле должно быть около 0,01 % Mg.

Магний является поверхностно-активным элементом и распределяется в металле по границам зёрен и в междендритных участках, а также на поверхностях раздела фаз.

Металл с магнием имеет пониженную диффузионную подвижность атомов; такой металл менее подвержен разупрочнению при рабочей температуре и напряжении.

Окись магния может восстанавливаться алюминием уже при содержании алюминия в металле около 0,1 %, поэтому с точки зрения термодинамики длительная выдержка в индукционной вакуумной печи жаропрочных сплавов, содержащих алюминий, нежелательна.

Введение церия совместно с алюминием является эффективным средством рафинирования металла от кислорода. Особое значение это имеет для сплавов с высоким содержанием хрома, в которых активность углерода понижена из-за наличия хрома [1].

Любой технологический процесс, который может привести к удалению оксидных и нитридных включений или предотвратить их образование, очевидно важен для окончательной чистоты получаемого продукта.

Как показывает отечественный и зарубежный опыт, получить высококачественные лопатки с бездефектной монокристаллической структурой возможно только при использовании для их отливки сплавов с ультранизким содержанием в них вредных примесей углерода, серы, фосфора, кремния и газов – кислорода и азота. Это обусловлено тем, что образующиеся с участием указанных элементов соединения (карбиды, сульфиды, фосфиды, оксиды, нитриды) выделяются внутри монокристалла и являются, с одной стороны, концентраторами напряжений, инициирующими зарождение трещин, а с другой стороны, источником гетерогенного зарождения равноосных «паразитных» зёрен, что существенно снижает прочностные характеристики и стабильность свойств монокристаллов, а также выход годных лопаток. Так, при содержании в сплаве 0,0025–0,0030 % азота выход годных лопаток по бездефектной монокристаллической структуре составляет всего 50–60 %; при снижении содержания азота в этом сплаве до уровня 0,0006–0,0007 % выход годных лопаток повышается до 80–90 %.

В случае снижения суммарного содержания газов (кислорода и азота) в жаропрочном сплаве для монокристаллического литья с 0,005 до 0,002 % его долговечность при испытании на длительную прочность увеличивается в 1,5–2,0 раза; снижение содержания углерода в этом сплаве с 0,02 до 0,005 % позволяет увеличить его долговечность в 2–3 раза. Отрицательное влияние серы, кроме образования в сплаве сульфидов, проявляется также в том, что с увеличением её содержания в металле с 0,0005 до 0,0020 % температура локального плавления сплава снижается с 1375 до 1330 °С, т. е. рабочая температура сплава понижается на 45 °С [5].

В отличие от жаропрочных сплавов, отливаемых методом равноосной кристаллизации, при которой имеет место объёмная кристаллизация и, соответственно, большая протяжённость границ зёрен, при получении монокристаллических отливок, в которых границы зёрен отсутствуют, кристаллизация расплава происходит однонаправленно – в направлении теплового потока; при этом примеси концентрируются перед плоским фронтом кристаллизации и нарушают его устойчивость, что приводит к появлению дефектов в монокристалле [11].

Таким образом, жаропрочные сплавы с монокристаллической структурой более чувствительны к примесям, чем сплавы с равноосной структурой, что связано с особенностями их структурообразования.

Удаление водорода и азота

Большой интерес представляет механизм удаления водорода и азота из жидкого металла. При рассмотрении выделения из жидкого металла в вакууме необходимо учитывать газовыделение через стенки тигля.

В работе [2] представлена следующая схема удаления водорода и азота из жидкого металла:

1. Перенос растворённых атомов азота или водорода в объёме жидкого металла, включающий массопередачу, благодаря конвективным потокам и диффузии через непромешиваемый слой на границе раздела фаз. Перенос атомов азота и водорода осуществляется из объёма металла к границам раздела: металл – футеровка, металл – газовая атмосфера над металлом, металл – газовые пузырьки, находящиеся в металле.

2. Адсорбция атомов азота и водорода в поверхностном слое:

[Н] → Надс; [N] → Naдc.

3. Рекомбинация адсорбированных атомов азота и водорода на поверхности раздела в газовые молекулы по реакции:

Надс + Надс = Н2адс; Nадс + Nадс = N2адс.

4. Десорбция газовых молекул.

5. Отвод молекулярного азота и водорода в газовую фазу, в т. ч. всплывание пузырьков в металле, отвод газа от поверхности металла в результате работы вакуумных насосов.

Повышение температуры и понижение давления в печи значительно ускоряют процесс дегазации и обеспечивают достижение более низких остаточных содержаний водорода и азота.

Более низкое значение скорости дегазации в алундовом тигле по сравнению с магнезитовым объясняется тем, что алундовый тигель более плотный, дегазация идёт преимущественно с поверхности ванны, в то время как при плавке в магнезитовом тигле газ может уходить и через его стенки.

Необходимо считаться и с тем, что наличие в металле хрома, ванадия, ниобия, титана понижает коэффициент активности азота в расплаве и тем самым прочнее связывает азот в растворе. С другой стороны, присутствие углерода и кремния повышает активность азота и способствует его удалению. Удалению азота мешает также и то, что он обладает низким коэффициентом диффузии по сравнению с водородом (DN = l – 4 · 10-4 см2/сек).

Удаление азота может происходить как путём образования и всплывания пузырьков, так и выделением при помощи конвективного переноса в газовую фазу. С повышением температуры процесс деазотации значительно ускоряется [2].

Ранее указывалось [4], что в сплаве ЖС30-ВИ при повышенном содержании азота (> 0,001 %) образуются карбидные включения округлой или полиэдрической формы, а при низком содержании азота (0,0006–0,0008 %) возникают игольчатые, вытянутые карбиды в виде «китайских иероглифов». В первом случае отмечался повышенный брак монокристаллических лопаток, отливаемых из такого металла, по макроструктуре (образование равноосных зёрен в монокристалле). При повышенной загрязнённости металла азотом образующиеся включения становятся центрами произвольной кристаллизации и нарушают естественный рост монокристаллов [11].

В этом исследовании изучалось влияние азота на структуру монокристаллов жаропрочных никелевых сплавов и разработаны эффективные способы рафинирования расплава от примеси азота в условиях вакуумной индукционной плавки.

Реакция деазотации относится к гетерогенным и происходит на границе раздела металл – газ. Уравнение скорости удаления азота из расплава будет иметь вид:


где Sрас – площадь поверхности расплава; Vрас – объём расплава; В – константа; Ср и С – равновесная и текущая константа соответственно; 0 – доля площади поверхности, заблокированная поверхностно-активными элементами (ПАЭ); D – коэффициент диффузии (D = Dмол + Dтурб, где Dмол – молекулярная диффузия; Dтурб – турбулентная диффузия); ν – кинематическая вязкость.

Из уравнения следует, что скорость деазотации может быть увеличена путём более интенсивного перемешивания расплава, увеличения поверхности раздела, металл – газ, уменьшения величины Ѳ (за счёт раскисления и десульфурации расплава), а также увеличения коэффициента Dмол и уменьшения ν (путём повышения температуры расплава).

Кроме того, повышение температуры расплава облегчает диссоциацию нитридных и карбонитридных включений в условиях вакуума.

Исследовано влияние температуры расплава на полноту удаления из него азота в условиях вакуумной индукционной плавки в сплаве ЖС30-ВИ.

На рис. 5 показано, что с повышением температуры расплава с 1620 до 1680 °С высота пиков падения вакуума в печи увеличивается, что свидетельствует о более интенсивном газовыделении при температуре расплава 1680 °С. При температуре расплава 1560 °С пиков падения вакуума не наблюдается.

На рис. 6 приведено изменение содержания азота в сплаве ЖС30-ВИ во время рафинирования расплава при разных температурах. Видно, что при температурах расплава 1560 и 1620 °С азот удалился незначительно (до 0,003 %), и только после рафинирования при температуре расплава 1680 °С его содержание понизилось до 0,0007 %. Содержание газов в металле определяли на анализаторе ТСН 600 фирмы Leco.


Рис. 5. Изменение уровня вакуума при проведении плавок сплава ЖС30-ВИ с различной термовременной обработкой расплава: 1620 °С (1), 1600 °С (2) и 1680 °С (3)


Рис. 6. Изменение содержания азота в сплаве ЖС30-ВИ во время рафинирования расплава при температурах 1560 (1), 1620 (2) и 1680 °С (3)


Для подтверждения полученных результатов в условиях промышленного производства сплава ЖС30-ВИ в вакуумной индукционной печи ИСВ 0,6 с ёмкостью тигля 600 кг было сделано пять плавок данного сплава.

Из металла всех плавок в условиях моторостроительного завода отлиты лопатки с монокристаллической структурой с кристаллографической ориентацией <001>. При проведении контроля макроструктуры лопаток установлено, что если содержание азота в металле составляет < 0,001 % (по массе), то брак лопаток по макроструктуре незначителен; если же содержание азота > 0,001 % (по массе), то отмечался повышенный брак монокристаллических лопаток по макроструктуре – образование в них равноосных зёрен.


Рис. 7. Количество бракованных лопаток по макроструктуре в зависимости от содержания азота в сплаве ЖС30-ВИ


На рис. 7 приведены статистические данные моторостроительного завода по количеству бракованных по макроструктуре лопаток из сплава ЖС30-ВИ, отлитых с монокристаллической структурой из металла с высоким и низким содержанием азота; при содержании в сплаве > 0,001 % азота (фактически 0,014–0,027 %) бракованных лопаток оказалось > 80 %, в то время как при содержании азота < 0,001 % (фактически 0,0006–0,0008 %) таких лопаток всего 15 %.

Микроструктуру образцов всех плавок исследовали на оптическом микроскопе Axio Imager. В образцах с высоким содержанием азота наблюдались карбидные и карбонитридные включения в виде частиц округлой и полиэдрической морфологии. Следует отметить, что значительное их количество располагалось не в междендритных областях, а непосредственно в осях дендритов 2-го порядка.

Это свидетельствует об их образовании одновременно с формированием дендритной матрицы основного твёрдого раствора или даже о том, что эти частицы выделялись из расплава как первичные.

Выделение таких частиц в верхней части жидко-твёрдой зоны при формировании монокристалла методом направленной кристаллизации приводит к образованию посторонних кристаллов, поскольку эти частицы являются центрами образования зародышей таких кристаллов в температурной области, где ещё не закончилось формирование дендритного каркаса растущего монокристалла.

В образцах с низким содержанием азота карбидные выделения имеют вытянутую шрифтовую морфологию в виде «китайских иероглифов» и располагаются строго в междендритных областях. Выделений карбидов в осях дендритов не обнаружено. Таким образом, для обеспечения высокой технологичности сплава ЖС30-ВИ при получении монокристаллов с высоким выходом годного необходимо обеспечивать содержание азота в металле на уровне < 0,001 % (по массе).

Полученные в работе результаты можно распространить и на другие литейные жаропрочные сплавы, отливаемые с монокристаллической структурой методом направленной кристаллизации.

Десульфурация в вакууме

При выплавке металла в вакуумных печах, в условиях недостаточно высокого вакуума, не происходит заметного удаления серы. Для существенного снижения концентрации серы путём испарения необходимо проводить плавку при остаточном давлении ниже 0,1 н/м2 (0,001 мм рт. ст.) и выдерживать жидкий металл длительное время. При исходном содержании серы около 0,02 % после трёхчасовой выдержки металла в вакуумной индукционной печи при остаточном давлении 10-3 н/м2 (10-5 мм рт. ст.) концентрация её снижается до 0,01 % [12].

Для уменьшения содержания серы в металле необходимо применять шлаковые смеси. Наилучшие результаты даёт использование смеси, состоящей из 90 % СаО и 10 % CaF2 в зёрнах размером 2–5 мм, которую загружают на дно тигля под слой шихты [13].

Применение шлакообразующих в вакуумных процессах позволяет значительно облегчить процесс десульфурации сплава. В работе [14] стенки тигля вакуумной индукционной печи обмазывали пастой из свежегашёной извести. После плавки при давлении 0,25 н/м2 (0,002 мм рт. ст.) содержание серы снизилось с 0,03 до 0,002–0,003 %.

Использование шлаковых смесей открывает перспективу значительного повышения эффективности десульфурации в вакууме. При прочих равных условиях (температура, состав шлака, содержание углерода в металле) понижение давления должно вызывать смещение равновесия реакции в направлении возрастания величины LS (характеризующей долю серы, перешедшей из металла в шлак), и поэтому удаление серы в вакууме должно протекать с большей полнотой, чем при атмосферном давлении.

В плавках, проведённых в вакуумной индукционной печи с добавками шлака на дно тигля, по сравнению с плавками, проведёнными при атмосферном давлении, особенно в случае низкоуглеродистых или безуглеродистых никелевых сплавов, сера удаляется значительно полнее [2].

Сера в никелевых жаропрочных сплавах является вредной примесью. Поэтому одна из целей рафинирования – полное (почти полное) удаление этого элемента в процессе выплавки. В работе [3] отмечается, что при содержании в сплаве серы свыше 1 ppm ухудшается адгезия защитного покрытия к основному металлу из-за диффузии серы в покрытие. При этом снижаются надёжность и ресурс работы защитного покрытия на деталях двигателя. В связи с этим вопросы эффективного глубокого рафинирования сплавов от примеси серы приобретают первостепенное значение.

Наиболее эффективным способом удаления серы из металла при плавке в вакууме является применение шлаковых смесей на основе оксида кальция.

Авторами [3] установлено, что при обработке расплава сложнолегированного жаропрочного сплава ЖСбУ в вакуумной индукционной печи высокоосновными шлаковыми смесями содержание серы в сплаве снижается, но при этом из шлака восстанавливается кальций, отрицательно влияющий на длительную прочность сплава. Поэтому повышение жаропрочных свойств сплава может быть достигнуто только при одновременном осуществлении двух процессов: глубокой десульфурации расплава путём применения шлаков на основе оксида кальция и полном удалении из расплава избыточного кальция как продукта реакции десульфурации.

Результаты комплексного решения проблемы удаления серы из никелевого жаропрочного сплава и при этом обеспечения отсутствия в его составе остаточного кальция приведены в работе [15]. Был исследован одностадийный процесс десульфурации сплава ЖСбУ-ВИ, предусматривающий ввод металлического кальция непосредственно при плавке сплава. Кальций в количестве 0,30 % присаживали или в тигель вместе с шихтой, или перед выпуском под давлением аргона 20 кПа. В случае присадки кальция в тигель вместе с шихтой и проведения всего технологического процесса под вакуумом остаточное содержание кальция в готовом металле после порционного переплава составляет менее 0,001 %, т. е. следы. Долговечность сплава ЖСбУ-ВИ, в котором имеется остаточный кальций, низкая, в то время как металл, не содержащий остаточный кальций, отличается весьма высоким уровнем долговечности, который в 1,5–2,0 раза выше, чем у металла, выплавленного по традиционной технологии.

Очистить сложнолегированный никелевый расплав от примеси серы можно также путём ввода в него редкоземельных металлов, например лантана.

В ренийрутенийсодержащем сплаве ВЖМ4-ВИ, микролегированном лантаном, обнаружены соединения лантан-никель, в состав которых также входит сера. Лантан связывает серу в термически прочные тугоплавкие включения с температурой плавления выше 1500 °С и тем самым нейтрализует её вредное влияние.

Бесплатный фрагмент закончился.

Возрастное ограничение:
12+
Дата выхода на Литрес:
27 мая 2022
Дата написания:
2022
Объем:
179 стр. 49 иллюстраций
Правообладатель:
Автор
Текст
Средний рейтинг 4,5 на основе 11 оценок
По подписке
Текст
Средний рейтинг 4,7 на основе 7 оценок
По подписке
Текст
Средний рейтинг 4,6 на основе 40 оценок
По подписке
Текст
Средний рейтинг 4,8 на основе 5 оценок
По подписке
Текст
Средний рейтинг 3,8 на основе 143 оценок
По подписке
Текст, доступен аудиоформат
Средний рейтинг 4,4 на основе 24 оценок
По подписке
Текст
Средний рейтинг 4,3 на основе 7 оценок
По подписке
Текст, доступен аудиоформат
Средний рейтинг 4,6 на основе 299 оценок
Текст
Средний рейтинг 4,2 на основе 5 оценок
По подписке