Читать книгу: «Самолёт Ан-124 «Руслан». Особенности конструкции и лётной эксплуатации», страница 2

Шрифт:

Крыло

На самолете установлено стреловидное крыло (угол стреловидности – 25° по 1/4 хорд) трапециевидной формы.

Общая площадь крыла – 628 м2.

Крыло крепится к фюзеляжу по схеме высокоплана при помощи шести шарнирных узлов.

Снизу на крыле крепятся четыре пилона для навески двигателей. Каждый пилон имеет четыре точки крепления к крылу.

Конструкция крыла по размаху состоит из центроплана и двух консольных частей крыла (КЧК). К консольным частям крыла крепятся законцовки.

Продольный силовой набор центроплана образован четырьмя лонжеронами и силовыми панелями.

Кессон консольной части крыла расположен между нервюрами 5 и 54 и образует шесть топливных баков. Лонжероны 1 и 4 имеют протяженность по всему размаху КЧК, лонжерон 2 заканчивается на нервюре 41, лонжерон 3 – на нервюре 53. На лонжеронах 1 и 4 имеются кронштейны для крепления механизации крыла и пилонов. На нижней поверхности консольной части крыла выполнены люки-лазы, герметично закрытые люками.

Двухсекционные элероны обеспечивают поперечное управление, причем на взлетно-посадочных режимах работают все секции, а в крейсерском полете только внутренние.

В носовой части крыла по всему размаху каждой консоли установлено шесть секций предкрылков. Секции 1 и 2 предкрылков – необогреваемые, а секции 3, 4, 5, и 6 – обогреваемые горячим воздухом.

Трубопроводы противообледенительной системы предкрылков переднему лонжерону крыла между нервюрами 27 и 39. Из этих трубопроводов через узлы подвода воздуха он поступает в распределительные трубы внутри предкрылков. Узлы подвода воздуха конструктивно представляют собой телескопическое соединение. Из распределительных труб воздух поступает в щель между гофрами и обшивкой предкрылков. Пройдя между гофрами и обогреваемой обшивкой, воздух попадает во внутреннее пространство предкрылка и через отверстия в задней стенке сбрасывается в атмосферу.

Предкрылки навешиваются на крыло посредством рельсов и винтовых механизмов, соединенных с трансмиссией. При уборке предкрылков рельсы задним концом входят внутрь кессона через вырезы в отсеке лонжерона 1 в герметичные кожухи.

В хвостовой части крыла на каждой консоли установлены внутренний закрылок и две секции концевых однощелевых внешних закрылков, внутренний и внешний элероны и двенадцать секций интерцепторов (спойлеров).

Примечание: Однощелевые закрылки являются слишком примитивными с точки зрения аэродинамики. На практике это приводит к тряске выпущенных закрылков из-за турбулизации потока и недостаточно жесткой конструкции навески закрылков.

Интерцепторы (спойлеры) 1, 2, 3, 4 используются в качестве тормозных щитков для уменьшения длины пробега, интерцепторы 5, 6, 7, 8 – в качестве полетных спойлеров для снижения самолета, интерцепторы 9, 10, 11, 12 – в качестве интерцепторов-элеронов для поперечного управления самолетом.

Внутренний закрылок и обе секции внешнего закрылка имеют по два механизма навески. На внешних консолях внутреннего и первой секции внешнего закрылков между лонжеронами выполнена профилированная щель. Снизу щель закрыта поворотными щитками. Управление щитком кинематически связано с системой управления закрылками.

Примечание: Фактически на этих участках закрылков они превращаются в духщелевые закрылки.

Внутренний закрылок и каждая секция концевого закрылка управляются двумя шариковинтовыми подъемниками. От винтового подъемника движение передается каретке, которая, перемещаясь по изогнутому рельсу балки, выдвигает закрылок. Одновременно движение каретки через тягу передается кривошипу, от него – тяге, отклоняющей закрылок. Требуемый закон движения всех частей закрылка обеспечивается кинематикой механизма навески.

Хвостовое оперение

Оперение самолета – классической схемы, свободнонесущее, однокилевое, состоит из горизонтального и вертикального.

Примечание: Недостатком классической (стандартной) схемы является неизбежная возможность затенения стабилизатора впереди находящимся крылом на определенных углах атаки, что может привести к бафтингу и потере эффективности руля высоты [1]. Называть такую схему хвостового оперения «нормальной» – просто неприлично.

Горизонтальное оперение включает в себя стабилизатор и руль высоты. Руль высоты состоит из двух секций, связанных между собой общей системой управления и синхронно отклоняющихся вверх и вниз.

Вертикальное оперение включает в себя киль и руль направления. Руль направления состоит из двух секций, которые связаны между собой общей системой управления.

Внутри киля находится технологическая шахта, через которую проходит лестница, установленная в киле постоянно и предназначенная для осмотра внутреннего каркаса киля.

Гидравлический комплекс

Общие сведения

Гидравлический комплекс самолета предназначен для обеспечения:

– гидроприводов системы управления самолетом и механизации крыла;

– уборки-выпуска стоек шасси;

– гидроцилиндров поворота колес передней опоры;

– торможения колес шасси;

– управления стеклоочистителями;

– управления передним и задним грузолюком;

– управления лестницей в кабину экипажа и в кабину обслуживающего персонала.

Гидравлический комплекс состоит из четырех автономных гидросистем – 1-й, 2-й, 3-й и 4-й.

Каждая рулевая поверхность управляется от всех четырех гидросистем, а ответственные потребители (торможение колес, задний грузовой люк, уборка и выпуск шасси и т.д.) – от трех или двух гидросистем. Менее ответственные потребители, которые работают только на земле, управляются от одной гидросистемы.

Для защиты гидросистем от чрезмерного повышения давления в случае отказа регулирующих устройств насосов в каждой гидросистеме установлен предохранительный клапан, который срабатывает при давлении в системе 250 кг/см2.

Для обеспечения кратковременных повышенных расходов рабочей жидкости в гидросистеме в момент срабатывания исполнительных механизмов, а также для гашения забросов давления при резких уменьшениях расхода в момент остановки исполнительных механизмов в общей напорной магистрали каждой гидросистемы установлены гидроаккумуляторы.

В системах 2, 3 и 4 дополнительно установлено по одному гидроаккумулятору в непосредственной близости от клапанов основного торможения колес шасси. Кроме того, в гидросистемах 2 и 3 установлены гидроаккумуляторы, которые от общей напорной магистрали отделены обратными клапанами для длительного сохранения в них давления при выключенных насосах. К этим гидроаккумуляторам подключен стояночный тормоз шасси.

Газовые полости гидроаккумуляторов заряжаются азотом до давления 90 кг/см2. Давление азота в гидроаккумуляторах контролируется по указателю, расположенному на щитке «ГИДРОСИСТЕМА». Датчики давления подключены к газовым полостям гидроаккумуляторов, поэтому при отсутствии давления в гидравлических полостях гидроаккумуляторов указатели показывают их фактическую зарядку азотом.

Источники давления гидросистем

Основными источниками давления в каждой гидросистеме являются два насоса НП107 переменной производительности с приводом от двигателя. Производительность одного насоса на взлетном режиме составляет не менее 150 л/мин при давлении до 195 кг/см2. Давление насоса при на режиме минимального расхода – 210 кг/см2. Рабочая жидкость – АМГ-10.

Общее количество жидкости в гидрокомплексе – около 850 л (без гидрожидкости системы регулирования высоты заднего порога).

Каждый насос конструктивно состоит из двух насосов: основного и дополнительного шестеренчатого насосов.

Основной насос – аксиально-плунжерного типа переменной производительности с торцевым распределением рабочей жидкости. Регулятор насоса обеспечивает поддержание необходимой производительности и перевод насоса в режим разгрузки.

В крейсерском полете, когда не требуется больших расходов рабочей жидкости, один из двух насосов может быть разгружен. Разгрузка насоса заключается в переводе его на режим минимальной производительности при пониженном до 40 кг/см2 давлении и осуществляется принудительной подачей напряжения на встроенный в насос электромагнитный клапан. На режиме разгрузки насос работает с незначительным ходом плунжеров, потребным только для охлаждения и смазка самих насосов и пополнения внутренних утечек, что позволяет сохранить ресурс насоса и уменьшить нагрев рабочей жидкости в системе. Разгрузка насоса выполняется только вручную, а загрузка может выполняться как вручную, так и автоматически. При этом насос не может быть разгружен или же автоматически загружается, если:

– давление за вторым насосом ГС менее 150 кг/см2;

– давление в гидросистеме менее 150 кг/см2;

– РУД двигателя находится в положении, соответствующем работе двигателя на режиме меньше 0,4 номинального. На этом режиме обороты насосов, а следовательно, и их подача составляют 83% от максимальных оборотов.

Для получения информации о том, какой из насосов необходимо разгрузить в целях равномерной выработки ресурса, бортовой автоматической системой контроля (БАСК) ведется учет времени наработки насосов под нагрузкой.

Во всех других случаях насос должен быть загружен.

На экране БАСК в параметрическом кадре «ГИДРО» в верхней части в аналоговом виде индицируются для каждой системы значения температуры жидкости за насосами (слева) и в расходном баке (справа), начиная с -40°. Ниже шкалы эти же значения индицируются в цифровом виде. При выходе значений температуры за пределы эксплуатационных допусков соответствующее цифровое значение мигает.

В нижней части кадра индицируются числовые значения наработки под нагрузкой (в часах) левого и правого насосов каждой гидросистемы.

Светосигнальное табло «ВКЛ.», расположенное над переключателем режимов работы гидронасоса, горит как при загруженном, так и при разгруженном насосе и гаснет при отказе гидронасоса, при выключенном двигателе или при нажатой кнопке «НАСОСЫ ОТКЛ.».

Для ускорения прогрева жидкости в гидробаках после запуска двигателей, а также для охлаждения насоса, и для ограничения максимальной температуры жидкости осуществляется принудительная прокачка рабочей жидкости с помощью дополнительных шестеренчатых насосов, встроенных в насосы, через специальный контур, в котором установлены термостатический клапан, приемник температуры и теплообменники. Рабочая жидкость, поступающая во внутренние полости основных насосов по линии всасывания, подается шестеренчатыми насосами к термостатическому клапану. При температуре рабочей жидкости менее 0° вся жидкость термостатическим клапаном направляется в гидробак, а при температуре выше 40° в линию с теплообменником. В диапазоне температур жидкости от 0 до 40° часть жидкости направляется в гидробак напрямую, а другая часть – через теплообменник. Теплообменники размещены в нижней части расходных отсеков топливных баков соответствующих двигателей.

В гидросистемах 2 и 3 линия нагнетания делится на общую линию нагнетания и линию нагнетания систем управления самолетом [2].

Приводы систем управления имеют преимущество по питанию, для чего в напорных магистралях 2 и 3 гидросистем перед потребителями, не связанными с системой управления самолетом, установлены подпорные клапаны РД36, которые уменьшают или полностью прекращают подачу гидрожидкости к этим потребителям при уменьшении давления ниже 150 кг/см2 перед гидроприводами систем управления самолетом. Кроме того, при снижении уровня жидкости в баках 2 и 3 гидросистем, связанном с утечками жидкости (в компенсационных баках меньше 5—7 л; в расходных баках меньше 21 л), подпорный клапан этой системы по командам сигнализатора уровня полностью перекрывает напорные линии, идущие к потребителям, не связанным с системой управления.

Питание рабочей гидрожидкостью основных насосов каждой системы осуществляется по линии всасывания непосредственно из гидробака, установленного в хвостовой части пилона двигателя. В этот же гидробак возвращается вся рабочая жидкость по линии слива от потребителей.

В гидросистемах 1 и 4 весь запас рабочей жидкости содержится в расходных баках, а в гидросистемах 2 и 3 установлены дополнительные компенсационные баки. В компенсационном баке содержится запас жидкости, необходимый для пополения расходного бака в случае снижения в нем уровня жидкости. Это может быть в случаях, когда насосы закачивают в систему жидкости больше, чем возвращается от потребителей по линии слива (например: зарядка гидроаккумуляторов, заполнение поршневых полостей цилиндров с односторонним действием и т.д.). Если по линии слива возвращается больше жидкости, чем подают насосы, избыток жидкости из расходного бака вытесняется в компенсационный по соединительному трубопроводу.

Перекачка жидкости из компенсационного бака в расходный производится насосной станцией НС-63. Привод насосной станции осуществляется от гидромотора, подключенного к общей магистрали гидросистемы. При наличии давления в гидросистеме насосная станция работает непрерывно, осуществляя циркуляцию рабочей жидкости между расходным и компенсационным баками. Такой обмен рабочей жидкости приводит не только к заполнению расходного бака, но и участию компенсационного бака в процессе охлаждения жидкости. Насосная станция НС-63 снабжена сигнализатором давления, который в случае падения давления до определенной величины выдает сигнал в БАСК об отказе перекачивающего насоса.

Гидросистемы 2 и 3 обслуживают общие для этих систем исполнительные механизмы (цилиндры управления задним грузовым люком, цилиндры стоек и створок шасси и т.д.). Это создает возможность перетекания рабочей жидкости из одной гидросистемы в другую. Чтобы рабочая жидкость не накапливалась в баке одной гидросистемы и не происходило опорожнения бака другой гидросистемы, предусмотрено выравнивание уровня жидкости. Для этого компенсационные баки конструктивно объединены в один блок и сообщаются между собой уравнительным и дренажным трубопроводами на определенном уровне заполнения баков.

Датчики температуры, установленные в расходных баках гидросистем, предназначены для выдачи сигнала о неготовности самолета к взлету, если температура рабочей жидкости хотя бы в одном из баков ниже – 20°.

Во всех гидробаках с помощью сетей наддува создается избыточное давление 3,2 кг/см2, необходимое для поддержания минимального давления гидрожидкости на входе в насосы, способствующего бескавитационной работе этих насосов. Каждая гидросистема имеет свою автономную сеть наддува.

В каждой гидросистеме, кроме основных насосов предусмотрены резервные источники давления. В качестве дополнительных источников давления в гидросистемах используются гидротрансформаторы НС-53, установленные между 1 и 2 гидросистемами и между 3 и 4 гидросистемами, турбонасосные установки ТНУ-86А и электрические насосные станции НС55А-5, установленные во 2 и 3 гидросистемах, ручной гидронасос используемый для дожатия основных стоек шасси.

Для обеспечения выпуска и уборки концевых закрылков в резервном режиме имеется пятая гидросистема, источником давления которой является гидротрансформатор, подключенный к 4 гидросистеме.

Гидротрансформаторы предназначены для создания давления в гидросистеме в случае отказа основных насосов или при отказе двигателя за счет наличия давления в соседней гидросистеме. При этом помощь оказывается без обмена рабочей жидкостью.

Гидротрансформатор представляет собой агрегат, состоящий из двух нерегулируемых моторов-насосов, соединенных общим валом. Каждый из моторов-насосов гидротрансформатора подключен к своей системе, и их жидкостные полости между собой не сообщаются. При работе гидротрансформатора один из моторов-насосов (в исправной гидросистеме) работает в режиме гидромотора и вращает второй мотор-насос, который работает как насос и создает давление жидкости в отказавшей гидросистеме.

Гидротрансформаторы установлены в пилонах внутренних двигателей ниже расходных гидробаков гидросистем 2 и 3.

Подача жидкости в моторы-насосы, подключенные к гидросисемам 1 и 4, производится не из расходных гидробаков этих систем, которые удалены от гидротрансформаторов и расположены ниже, а из дополнительных баков, установленных на заднем лонжероне крыла вблизи двигателей 2 и 3.

Для пополнения бака гидротрансформатора рабочей жидкостью при работе гидротрансформатора, одновременно с включением гидротрансформатора включается перекачивающая насосная станция НС-63. Насосная станция перекачивает рабочую жидкость из расходного бака гидросистемы в бак гидротрансформатора. Избыток жидкости из бака гидротрансформатора вновь возвращается в расходный бак. Контроль за работой насосной станции НС-63 осуществляется с помощью БАСК.

Полость высокого давления каждого мотора-насоса гидротрансформатора подключена к напорной магистрали соответствующей гидросистемы через клапан перепуска, два обратных клапана и подпорный клапан.

Подпорный клапан в выключенном положении закрыт и рабочую жидкость к гидротрансформатору не пропускает. Во включенном положении работает в режиме подпорного клапана, пропуская гидрожидкость к гидротрансформатору, если давление в напорной магистрали своей гидросистемы превышает 160—170 кг/см2, то есть включает гидротрансформатор в работу на соседнюю гидросистему и одновременно обеспечивает преимущество по питанию потребителям своей гидросистемы. Таким образом, подпорный клапан обеспечивает передачу в соседнюю гидросистему только избытка имеющейся в системе мощности.

Для того, чтобы гидротрансформатор не работал на систему, в которой произошла утечка рабочей жидкости, предусмотрено автоматическое отключение гидротрансформатора в случае, если в гидробаке питаемой системы уровень жидкости понизился до критического.

Турбонасосные установки предназначены для создания давления жидкости в полете при отказе двигателя и для работы потребителей гидросистемы на земле при неработающих двигателях. Турбонасосная установка представляет собой гидравлический насос с приводом от воздушной турбины. Привод турбонасосной установки осуществляется сжатым воздухом, отбираемым от любого работающего двигателя или от ВСУ. Подача воздуха регулируется двумя заслонками, соединенными с регулятором давления и блока управления. Насос плунжерного типа. Производительность турбонасосов – не менее 70 л/мин, давление нулевой подачи 210—240 кг/см2.

Турбонасосные установки установлены в пилонах внутренних двигателей.

Электрические насосные станции НС55А-5 предназначены только для питания маломощных потребителей при наземном обслуживании самолета и для подзарядки гидроаккумуляторов стояночного торможения. Насосная станция НС55А-5 является насосом переменной производительности с максимальной производительность 10 л/мин при давлении менее 190 кг/см2, и нулевой производительностью при давлении более 210 кг/см2.

Гидротрансформатор привода концевых закрылков предназначен для питания гидроприводов концевых закрылков в резервном режиме. Мотор гидротрансформатора запитывается рабочей жидкостью через подпорный клапан из 4 гидросистемы. Подпорный клапан пропускает жидкость к гидротрансформатору, если давление в 4 гидросистеме превышает 160—170 кг/см2, т.е. он обеспечивает передачу только избытка имеющейся в 4 гидросистеме мощности.

Подача жидкости во вторую половину гидротрансформатора, которая работает как насос производится из дополнительного бака, установленного вблизи гидротрансформатора. Заправка гидробака 5-й гидросистемы производится жидкостью из 1 гидросистемы через ручной распределительный кран.

Бесплатно
360 ₽

Начислим

+11

Покупайте книги и получайте бонусы в Литрес, Читай-городе и Буквоеде.

Участвовать в бонусной программе
Возрастное ограничение:
16+
Дата выхода на Литрес:
17 ноября 2016
Объем:
170 стр. 1 иллюстрация
ISBN:
9785448342240
Правообладатель:
Издательские решения
Формат скачивания:
Аудио
Средний рейтинг 4,4 на основе 37 оценок
Текст PDF
Средний рейтинг 3,3 на основе 10 оценок
Текст PDF
Средний рейтинг 4,2 на основе 20 оценок
Текст PDF
Средний рейтинг 2,5 на основе 2 оценок
По подписке
Текст PDF
Средний рейтинг 5 на основе 2 оценок
Текст PDF
Средний рейтинг 3 на основе 6 оценок
Текст PDF
Средний рейтинг 0 на основе 0 оценок
По подписке
Текст
Средний рейтинг 2,4 на основе 5 оценок
По подписке
Текст
Средний рейтинг 0 на основе 0 оценок
По подписке
Текст
Средний рейтинг 3,3 на основе 9 оценок
По подписке
Текст
Средний рейтинг 5 на основе 1 оценок
По подписке
Текст
Средний рейтинг 0 на основе 0 оценок
По подписке
Текст
Средний рейтинг 0 на основе 0 оценок
По подписке
Текст
Средний рейтинг 1 на основе 1 оценок
По подписке