Читать книгу: «Нейросетевая торговая система Meta Trader 4 + MATLAB. Пошаговая разработка. Издание второе»

Шрифт:

Предисловие

Во второе издание включена глава ” Шаблон автоматической нейросетевой торговой системы на стандартных индикаторах”. Используя данный шаблон, представляющий пошаговую инструкцию (с кодами скриптов и экспертов MT4 и Matlab) построения нейросетевой торговой системы, вы сможете приступить к созданию своей торговой стратегии на основе предложенной системы либо развивать нейросетевую систему самостоятельно.

По прочтению этой главы – вы самостоятельно создадите исполняемый файл ExpertPrimer.exe, который представляет собой обученную нейронную сеть. В главе “Нейросети Matlab+MT4” вы найдете инструкцию, как оформить интерфейс этой программы с помощью GUI Matlab. Ниже представлены индикаторы, скрипты и эксперты, которые вы будете использовать при создании своей первой нейронной сети.



А здесь вы можете посмотреть пример результата работы с шаблоном https://youtu.be/o9DAvnzCDlU. Как мы видим, после всей подготовительной работы по выстраиванию системы и на ее основе торговой стратегии, весь этот процесс занимает несколько минут. В конце видео показана для сравнения работа автоматической торговой системы готовой к реальной работе. По завершению тестирования на графике выводятся индикаторы, которые используются торговым экспертом. Одним из достоинств данной системы является то, что она кроме двух простейших индикаторов, использует в эксперте только ценовые данные. Все остальное делает нейросеть.

Почему я написал – первой? Эта нейросеть будет для вас шаблоном, который в дальнейшем вы сможете использовать для создания рабочей торговой системы, и на основе которой вы будете разрабатывать различные торговые стратегии. Например, вот какие индикаторы, скрипты и эксперты, я использую в системе, которую так же описываю в главе “Нейросети Matlab+MT4”.





Ниже, как пример результативности работы данной системы приведен отчет по ее тестированию.



Обратим внимание на тот факт, что тестирование проводилось в динамике. Т.е. в процессе совершенствования торговой стратегии, основанной на нейросистеме и в течение длительного времени примерно четырех лет.

В главе “Критические ошибки при разработке нейросетевой системы” я попытался рассказать о ”подводных камнях” при ее подготовке. И выделить особенно важный аспект – проведения тестов нейронной системы. Некоторую часть главы “Нейросети Matlab+MT4” мне также пришлось посвятить этой проблеме на примере рабочей нейросетевой системы – так как этот процесс неотъемлем от разработки торговой стратегии.

Так же в соответствующих главах книги я поднимаю проблемы логического обоснования обучения нейронных сетей перед принятием решения, что должно нам помочь осознать – какую сеть в результате мы хотим получить. И косвенно связанную с этой проблемой, проблему выбора временного периода исторических данных для обучения нейронной сети я поднимаю в главе “Использование синтетических баров для определения “спектра”.

Видеоуроки, облегчающие понимание обучения, тренировки и тестирования нейросетей и видеоролики примеров работы с пользовательскими индикаторами можно посмотреть на канале https://www.youtube.com/channel/UCScAAn_sRRaKHdNIxl0aI9A?view_as=subscriber

Для приобретения программных кодов индикаторов, скриптов и экспертов данной нейросетевой системы вы можете связаться с автором по адресу электронной почты andreydib@yandex.ru.

Книга написана с учетом интересов всех категорий трейдеров, а так же тех читателей, которые готовятся заняться трейдингом. Хочется обратить внимание на тот факт, что в данной книге вы не найдете никакого теоретического материала по проблемам нейросетей и самого трейдинга. В любой литературе посвященной этим двум направлениям есть список трудов различных уважаемых авторов. Мне так же хотелось бы снабдить эту книгу таким же списком. Однако, увы, я этого не могу сделать, так как максимально постарался уйти от какой либо теории и психологии, которым в основном посвящена литература о трейдинге. Однако это не значит, что в свое время я не изучал подобную литературу и, что от нее нет пользы. Вот не полный список авторов, труды которых мною изучались – Чарльз Лебо и Дэвид В. Лукас, Юрий Жваколюк, Д. Ю. Пискулов, В. С. Сафонов, Шерри Де Ковни и Кристин Такки, Анна Эрлих, Александр Элдер, Джон Дж. Мэрфи. Но для понимания и практического применения материала представленного мною, в принципе, достаточно теоретической информации, которая подается на сайтах дилинговых компаний и официального сайта Matlab. То есть, любой читатель имеющий представление о трейдинге может выполнить пошаговую инструкцию из моей книги и получить готовую автоматическую нейросетевую систему торговли. Причем, при кажущейся сложности системы в итоге вы прейдете к пониманию, что конечный результат в плане применения программных кодов поразительно легок, но в тоже время самодостачен и функционален. Ведь основная нагрузка в данной системе происходит при обучении нейросетей. Но и здесь, вникнув в процесс, вы обнаружите, что настроив систему, обучение не занимает много времени, а можно даже сказать, что занимает мало времени. Однако нам все равно придется немного пофилософствовать в следующем разделе на тему логического обоснования обучения нейросетей на принятие решения. От этого обоснования во многом зависит конечный результат.

Важно! Данная книга ориентирована на Matlab. Программа Matlab не поставляется с этой книгой. Прежде чем приступать к изучению и разработки автоматической нейросетевой системы торговли, вы должны приобрести ее отдельно и установить.

Видео с визуализацией работы исполняемых файлов нейронных сетей совместно с MT4 также можно посмотреть по ссылкам https://youtu.be/5GwhRnSqT78 – при обучении и компиляции использовалась программа Matlab, https://youtu.be/cIegQGJKbhY– при обучении и компиляции использовалась программа NeuroSolutions 6.

Бесплатный фрагмент закончился.

Бесплатно
490 ₽

Начислим

+15

Покупайте книги и получайте бонусы в Литрес, Читай-городе и Буквоеде.

Участвовать в бонусной программе
Возрастное ограничение:
16+
Дата выхода на Литрес:
04 апреля 2019
Дата написания:
2019
Объем:
269 стр. 332 иллюстрации
Правообладатель:
Автор
Формат скачивания:
Текст
Средний рейтинг 4,8 на основе 5 оценок
По подписке
Текст
Средний рейтинг 3,3 на основе 15 оценок
По подписке
Текст
Средний рейтинг 3,7 на основе 17 оценок
По подписке
Текст
Средний рейтинг 3,9 на основе 54 оценок
По подписке
Текст
Средний рейтинг 3,3 на основе 50 оценок
По подписке
Текст, доступен аудиоформат
Средний рейтинг 4,7 на основе 16 оценок
По подписке
Текст
Средний рейтинг 2,6 на основе 18 оценок
По подписке