Цитаты из книги «Революция в аналитике. Как в эпоху Big Data улучшить ваш бизнес с помощью операционной аналитики», страница 3
Для иллюстрации возьмем ранние фазы обнаружения, когда нужно просто проверить, работоспособна ли идея или нет. На данной стадии не нужно постоянно повторять процесс – просто нужно как можно быстрее получить ответ. Если на написание программы уходит всего один час и еще три часа на выполнение процесса, то это нормально. Ответ будет получен достаточно быстро для того, чтобы понять, имеет ли смысл двигаться дальше в этом направлении или нет. В то же время глупо тратить на написание программы 12 часов, чтобы разработать более эффективный процесс, который будет выполнен всего за несколько минут, поскольку на данный момент неизвестно, потребуется ли повторять этот процесс больше одного раза.
Или возьмите подходы, которые используются банками для выявления случаев мошенничества с кредитными картами или используются поставщиками услуг электронной почты для фильтрации спама. Ни одна из этих процедур не работает идеально. Мы по-прежнему получаем спам по электронной почте или можем стать жертвами мошенничества с банковскими картами. Иногда случается, что в папку со спамом отправляются нормальные письма или банк ошибочно блокирует кредитную карту. Тем не менее в целом ситуация намного лучше той, что была бы в отсутствие аналитики.
В свете вышеуказанных различий организация должна быть готова к тому, что иногда операционно-аналитические процессы будут давать сбои. Возьмите такой крайний случай, как «мгновенный обвал» фондового рынка 6 мая 2010 г., о котором мы говорили в третьей главе. Все началось с небольшой ошибки в одном торговом алгоритме. Многие другие алгоритмы раскрутили его действие и, подобно леммингам, разом бросающимся со скалы, устроили огромную заваруху.
Целью является улучшение, необязательно до совершенства, миллионов и миллионов ежедневно принимаемых решений. Если существует возможность дополнительно улучшить этот процесс, это замечательно, но только не за счет требуемых скорости
и масштаба. Поначалу вам может быть некомфортно от мысли о том, что вы сознательно не реализуете всех предлагаемых аналитикой возможностей, но это вполне нормально, если наглядная отдача от аналитики, проистекающая из улучшения решений, превышает затраты на нее. При наихудшем сценарии, возможно, придется отказаться от использования на практике ценного открытия, если затраты на его операционализацию будут намного превышать ожидаемую отдачу.
Один из уроков, которые я выучил за годы работы, состоит в том, что, если у вас есть опытный пользователь любых аналитических инструмента или технологии, значит, есть шансы, что, потратив достаточно времени и сил, он сможет выстроить практически все что угодно.
Операционная аналитика, разработанная аналитической командой, должна встраиваться в операционно-производственные системы, поэтому специалисты-аналитики не могут продолжать работать по старинке – вытаскивая данные в автономное аналитическое окружение. Это означает, что аналитическая команда не сможет выполнить операционную аналитику без участия и поддержки ИТ-команды.
К сожалению, во многих организациях аналитический отдел и ИТ-отдел находятся в состоянии постоянных распрей. Я много раз сталкивался с ситуациями, когда отношения между ними были далеко не дружественными. Но если организация собирается пре-
вратить традиционную аналитику в операционную, абсолютно необходимо решить данную проблему. Когда мы вместе с клиентом пытаемся ее устранить, сотрудники моей компании называют это «консультированием по проблемам брака». Как правило, мы сажаем с одной стороны стола ИТ-команду, а с другой стороны – аналитическую команду. Поначалу все сидят с угрюмыми лицами и скрещенными на груди руками. На предварительных встречах каждая команда изливает на нас поток жалоб на то, насколько неразумна другая команда и как трудно с ней работать. Причем для конфликтных отношений существуют вполне объективные причины.
Итак, что следует учесть, оценивая затраты, связанные с внедрением операционной аналитики? Вам придется потратиться на следующее (а возможно, и не ограничиться этим):
• оборудование для поддержки аналитической обработки;
• программное обеспечение (обратите внимание, что даже в случае с открытым исходным кодом возникнут затраты, связанные с установкой и настройкой ПО);
• пространство для размещения оборудования и потребляемую электроэнергию;
• полностью загруженную рабочую силу, потребную для обеспечения безопасности,
назначения приоритетов ресурсов и настройки связности сети;
• сбор, загрузку и подготовку данных;
• рабочую силу для развития аналитического процесса;
• действия по тестированию логики программы и точности результатов процесса;
• обслуживание платформы, ПО и аналитических процессов с течением времени;
• обучение персонала навыкам пользования всеми различными компонентами аналитического окружения.
Все эти затраты должны быть оценены, исходя из периода в несколько лет до завершения инвестиционного цикла.
Сопоставляя данные о местоположении с данными о продажах можно составить более ясное представление об эффективности промоакции. Например, некое место в торговом зале может казаться отличным для привлечения покупателей, а выяснится, что на самом деле это не так. Или же окажется, что выкладка была размещена в непривлекательном месте либо ее убрали на день раньше срока. Аналитика, оценивающая эффективность промоакции, способна принять вышеназванные обстоятельства во внимание.
Соответственно при планировании следующих промоакций производитель будет договариваться о выделении лучшего места для выкладки и об оплате с учетом уточненных показателей продаж, привязанных ко времени и месту. Несмотря на то что изначально эти данные собираются с целью контроля за соблюдением условий, они могут использоваться для того, чтобы внести поправки
в стратегии продвижения товара.
Ускорение после остановки требует гораздо больше топлива, чем просто для движения. Кинетическая энергия – мощная сила! Однако, интегрируя GPS-технологии на грузовых составах с уточненной информацией о текущем графике движения поездов по всей сети железных дорог, железнодорожные компании получили возможность экономить больше топлива. Алгоритмы непрерывно просчитывают, с какой скоростью поезд должен ехать, чтобы ему не пришлось задерживаться на следующей остановке в пути следования.
Это означает, что на некоторых участках он может двигаться гораздо медленнее, чем возможно, что на первый взгляд может показаться странным. Однако топливо, сэкономленное за счет устранения торможения и последующего возобновлении движения с потерей движущей силы, оправдывает изменения. Кроме того, в конечном итоге поезд прибывает в пункт назначения вовремя, поскольку он двигался медленнее только тогда, когда все равно бы простаивал на остановках.

