Читать книгу: «Целостный метод системной технологии и системная экология», страница 3

Шрифт:

● Ранее мы установили, что код целого – целое.

Для реализации метода системной технологии это означает, что в виртуальной среде кодов целого существует конкуренция. В предыдущем разделе обоснован постулат о том, что код целого – целое. Поэтому каждый код целого в процессе своего жизненного цикла объединяется с другими кодами целого в совокупности кодов целого, которые движутся в направлении создания нового целого.

В процессе образования таких совокупностей у каждой создающейся совокупности есть выбор «принимать или не принимать» данный код целого, как идею выживания, сохранения и развития целого, в «свою» совокупность. Так и у каждого кода целого есть выбор «входить или не входить» в данную совокупность кодов целых.

В результате для каждой создающейся совокупности есть несколько «приемлемых» кодов для «принятия» в свой состав. В свою очередь, для каждого кода целого есть возможность участия в нескольких совокупностях кодов, движущихся каждая в направлении создания нового кода целого.

● Метод системной технологии принимает во внимание также, что в силу конкуренции кодов целого существует и продуцирующая деятельность кодов целого — каждое целое продуцирует коды целого и размещает их в частях среды деятельности (постулат множественной реализации целого).

Для целого это один из способов управлять своим выживанием, сохранением и развитием, используя различные носители своего кода целого, заменяя, при необходимости, одни свои части на другие.

● При адаптации метода системной технологии к конкретному объекту деятельности необходимо учитывать, что целые и части целых осуществляют деятельность, каждый «в своем ритме», в своем формате времени. При этом форматы времени других целых могут быть значительно больше, значительно меньше форматов времени данного целого, в пределе – бесконечно большими, бесконечно малыми по отношению к формату времени данного целого. Поэтому многие целые могут показаться бездеятельностными, «неживыми» и отнесены к неживой природе. Например, камни, по всей видимости, осуществляют свою деятельность, как целые, гораздо медленнее человека, и поэтому отнесены им к неживой природе. Тогда живая природа состоит из объектов, действующих в форматах времени, близких к человеческому. При определении формата времени объекта деятельности имеет смысл соотносить его с длительностью жизненного цикла вида и как единицы данного вида целого.

Формат времени может соотноситься также с такими характеристиками, как скорость течения процессов данного целого, длительность определенных процессов активной фазы деятельности данного целого как вида и как единицы целого.

Можно продолжить исследования формата времени и показать, что существует формат времени мира у данного целого и дать взаимосвязанные определения единицы вида целого, вида целого, мира целого.

● Метод системной технологии использует модели целого для формирования направленности совокупности частей среды на выживание, сохранение и развитие данной совокупности, как целого.

Результат такой направленности определяется представлением о целом – «моделью целого», содержащей в себе код данного целого.

Например, нация-страна может обеспечивать свое выживание, сохранение и развитие в среде созданием надежных границ с окружающими странами на земле, на воде, в воздушном, информационном, финансовом, других пространствах. Но если она не представляет собой целого, не стремится к выживанию, сохранению и развитию себя, как целого, то ее разрушат внутренние противоречия. Необходим, что очевидно, код целого нации, к осуществлению которого она будет стремиться, как совокупность этносов. В то же время нация сложна и не может быть представлена моделью целого, основанного на одном коде целого – коде целого, как совокупность этносов, в данном случае. Поэтому возникает задача построения модели нации, как целого, содержащего обоснованное множество взаимодействующих и конкурирующих кодов целого.

● При построении конкретной модели целого особое внимание уделяется выделению ключевых и узловых кодов объекта деятельности. Узловые – определяют целостность некоторого набора частей объекта деятельности, ключевые – определяют целостность объекта деятельности, действуя через узловые части. Ключевые содержат реализацию общего кода целого объекта деятельности, узловые – частных кодов, кодов частей целого.

Тогда общество исследуется, как целое, находятся ключевые и узловые коды, в смысле целостностносообразных и целосообразных действий общества.

Из числа ключевых может быть выбран один «наиболее мощный по действию» в смысле целости и целостности общества код (например, это код ДНИФ-модели), в котором, по мнению системного технолога, содержится «ключ» кода общества, как целого. Может быть выбрана и совокупность «наиболее мощных по действию» ключевых кодов.

Литература к главе 1

1. Статьи «Целостность», «Часть и целое» в: Большая советская энциклопедия, третье издание. Изд. «Советская энциклопедия», 1969 – 1978 г.г.

2. Чернецкий В.И. Большие системы и управление. Изд. ЛВВИКА им. А.Ф. Можайского, Ленинград, 1969, 206 с.

3. Афанасьев В.Г. Системность и общество. – М.: Политиздат, 1980. – 368 с.

4. Диалектика и системный анализ/Под ред. Д.М. Гвишиани. – М.: Наука, 1986. – 336 с.

5. Кузьмин В.П. Принцип системности в теории и методологии К. Маркса. – 3-е изд. – М.: Политиздат, 1986. – 389 с.

6. Садовский В.Н. Диалектика и системный подход. В кн. Диалектика и системный анализ/Под ред. Д.М. Гвишиани. – М.: Наука, 1986, стр. 27-38.

7. Вопросы кибернетики, ВК-72/Под ред. Р.М. Суслова и А.П. Реутова. – М.: Научный Совет АН СССР «Кибернетика», 1980. – 141 с.

8. Богданов А.А. Всеобщая организационная наука (тектология). В 2-х т. – М.: Экономика, 1989, т.1 – 304 с., т.2 – 351 с.

9. Телемтаев М.М. Исследование аналитической модели организационно-технических систем (системная технология). В кн.: “Вопросы кибернетики”, под ред. Р.М.Суслова и А.П.Реутова; М.: изд. н/с “Кибернетика” АН СССР, 1980, ВК-72, с.124-136.

10. Телемтаев М.М. Системная технология (основные задачи, принципы и правила разработки). – Вестник АН КазССР, Алма-Ата,1987, № 1, с.46-52.

11. Телемтаев М.М. Основы теории технологического подхода (системной технологии). Алма-Ата: Каз-НИИНТИ (деп. рук. № 1715), 1987, 82с.

Глава 2. Системы

Изучение систем, как целостных и целых, осуществляется во многих областях знания.

Существенный вклад в формирование понятий системности внесли К. Маркс и Ф. Энгельс13, В. Ленин14. Первой общей теорией систем явилась тектология А.А. Богданова15, ей предшествовали труды А.М. Бутлерова, Д.И. Менделеева, Н. Белова, Е.С. Федорова. В 30-х годах А. Тэнсли предложил термин «экосистема»16. С концепцией «общей теории систем» выступил Л. Берталанфи17. Развитие системных исследований ускорилось после создания кибернетики Н. Винером18, в связи с появлением такого объекта исследований, как кибернетические системы. Наивысшим достижением в смысле системности и целостности является концепция ноосферного развития В.И.Вернадского19.

При изучении систем, как целых и целостных, будем, кроме комплекса постулатов целого и целостности метода системной технологии, использовать следующие определения общей системы и системности:

система – это совокупность способов и/или средств обеспечения взаимодействия внутренней среды элементов (частей) системы с внешней средой системы;

системность – это целостность элемента (части) системы по отношению к данной системе; системность это целостность первого типа;

система системна, т.е. обладает свойством целостности, как правило, только первого типа – свойством целостности по отношению к другой системе, в которую она входит, как элемент (часть) этой другой системы.

В данном разделе мы рассматриваем возможности реализации постулатов целого с помощью систем.

Существуют ли системы как реальные части среды деятельности, как объекты материального мира, материальна или нематериальна система – один из дискуссионных вопросов периода становления системных исследований. Знать этот вопрос и ответ на него полезно начинающим изучать системы.

Он, конечно, подобен вопросу, возникающему в связи с разложением сигнала в совокупности гармонических составляющих с помощью преобразования Фурье – существуют ли гармоники, является ли на самом деле любой сигнал суммой синусоидальных сигналов. Ответ на второй вопрос известен – гармонические сигналы содержатся в реальных сигналах, т.е. сигналы разложимы на гармонические сигналы и, даже более, для многих сигналов, например, звуков музыки, именно та их часть, которая представима в виде гармоник, наиболее полно отражает этот сигнал, его «тембр», как инструмент познания данного сигнала. Кроме этого, есть сигналы, суть которых можно описать одной гармонической составляющей, одной нотой. Правда, большинство сигналов сложны и их недостаточно представить одной или многими гармониками; необходимы еще и другие описания данных сигналов.

Ответ на первый вопрос можно изложить в той же последовательности – системы содержатся в реальных частях среды, т.е. описания материальных объектов представимы системами. Даже более, для многих объектов именно та их часть, которая представима в виде системы, наиболее полно отражает этот объект, как инструмент познания данного объекта. Кроме этого, есть объекты, суть которых можно описать одной системой, одной моделью системы. Правда, большинство объектов познания сложны и их недостаточно представлять моделями большой и/или сложной системы; необходимы еще и другие описания данных материальных объектов.

Далее, при реализации некоторого замысла, проекта системы реальный объект, реализующий этот замысел (либо проект), конечно, является системой, повторяющей данный замысел (либо проект). Затем, на протяжении своего жизненного цикла он изменяется и приобретает многие новые черты, в том числе, несистемные, а также и черты новых систем, не предусмотренных при первоначальном замысле – эти общеизвестные реалии можно отразить, перефразируя известное высказывание В.С. Черномырдина: «хотели систему, а получилось, как всегда».

Другими словами, объекты материального мира содержат, конечно, части, являющиеся системами «по своей природе» или по замыслу создавшего их разума. Но в них есть и части, не подпадающие под описания в виде систем.

Значение системной методологии объясняется, как известно, тремя основными причинами.

Во-первых, большинство традиционных научных дисциплин – биология, психология, экология, лингвистика, математика, социология и др., дополнили объекты своего рассмотрения моделями систем.

Во-вторых, технический прогресс привел к тому, что объектами проектирования, конструирования и производства оказались большие и сложные системы. Поэтому возник комплекс новых дисциплин, таких, как кибернетика, информатика, бионика и др., одна из основных задач которых – моделирование систем.

Наконец, в-третьих, появление в науке, технике и производстве проблем исследования, проектирования и реализации систем повысило методологическую роль системных исследований.

Термин "система" охватывает очень широкий спектр понятий. Например, существуют горные системы, системы рек и солнечная система. Человеческий организм включает опорно-двигательную, сердечно-сосудистую, нервную, лимфатическую и другие системы. Мы ежедневно взаимодействуем с системами транспорта и связи (телефон, телеграф и т.д.) и экономическими системами. Исаак Ньютон назвал "системой мира" предмет своих исследований. Модель системы понимается и как план, метод, порядок, устройство, Поэтому и неудивительно, что этот термин получил среди ученых, конструкторов, производственников и др. специалистов такое распространение.

● Для целей данного раздела необходимо также описать представления о большой и сложной системах.

Определение большой системы дано В.И. Чернецким в первом, по сведениям автора, учебном издании по данному предмету20 в следующем виде:

«большая система (БС) есть система, представляющая собой совокупность взаимосвязанных управляемых подсистем, объединенных общей системой управления, характерной особенностью которой является наличие выделяемых частей. При чем для каждой части можно определить:

– цель функционирования, подчиненную общей цели всей системы,

– участие в системе людей, машин и природной среды,

– существование внутренних материальных, энергетических и информационных связей между частями системы, а также наличие внешних связей рассматриваемой системы с другими».

Там же В.И. Чернецким для больших и сложных систем сформулированы Закон информационного взаимодействия и Закон информационных ассоциаций, а также (совместно с Д.В. Бакурадзе) модель информационной динамики сложной системы, необходимые для повышения эффективности управления комплексными разработками.

Для лучшего усвоения определений большой системы по В.И. Чернецкому, и сложной системы по А.И. Бергу (глава 1), можно дополнительно дать следующую общую «пользовательскую» характеристику:

сложную систему, как и большую систему, невозможно рассмотреть «за один раз», чтобы получить требуемое решение проблемы, достичь цели, продуцировать результат.

Сложную систему нельзя рассмотреть «за один раз» из-за того, что надо последовательно рассмотреть несколько моделей всей системы, большую систему – из-за того, что надо последовательно рассматривать несколько моделей ее частей, как систем.

Рассмотрим этот вопрос с позиций постулатов 8 – 12 целостного метода системной технологии (глава 1) – постулатов общей модели.

● Система, на первый взгляд, «сложна сама по себе», так как для ее описания необходимы не менее чем две модели ее частей – модель процесса, модель структуры, модель элемента. А если элементы различны по природе – то и несколько моделей видов элементов. В случае если в одной модели собственно системы, достаточной для целей дальнейших рассмотрений объекта, можно объединить описание ее частей, несмотря на их разную природу, то собственно система не является сложной для дальнейшего анализа и исследования.

Но в том случае, когда для объединения описаний объекта исследований необходимо две и более моделей, мы видим объект исследования, как сложную систему.

Система, на первый взгляд, как бы и «большая сама по себе», так как рассматриваемый объект надо представить состоящим из большого количества частей – это опять же модель процесса, модель структуры, модели элементов. В случае если для совокупного описания процесса, структуры, элементов объекта достаточно создать одну модель системы, то такой объект мы не рассматриваем и как большую систему.

Но в ряде случаев для совокупного описания процесса, структуры, элементов объекта необходимо несколько этапов описания. Вначале их надо разделить на несколько отдельных совокупностей, для каждой из которых можно создать свою модель системы, известную исследователю, как решаемая. Затем все эти модели совокупностей объединить в модель всего объекта, как системы или создать из них новые совокупности теперь уже моделей систем, пока мы не придем к единой решаемой модели объекта в виде системы. Тогда мы имеем дело с объектом исследования, как с большой системой.

Такие объекты исследований не помещаются в формат возможностей исследователя «по глубине» (сложная система) и/или «по величине» (большая система).

Итак, сложный объект невозможно рассмотреть «за один раз», так как надо раз за разом рассмотреть каждую систему, моделирующую данный объект, а затем объединить результаты рассмотрения в один системный результат рассмотрения сложного объекта, как сложной системы.

В свою очередь, большой объект также невозможно рассмотреть «за один раз», так как надо раз за разом во взаимосвязи рассмотреть все модели систем, принятые для каждой из частей изучаемого объекта, а затем объединить результаты рассмотрения моделей частей объекта в один системный результат рассмотрения всего объекта, как большой системы.

● Образно говоря, изучаемый объект может «не вмещаться» в формат знаний, которым исследователь может оперировать для эффективной, в смысле определенного критерия, деятельности. Тогда исследователь представляет изучаемый объект в виде такой модели большой и/или сложной системы, метод решения которой ему известен и реализуем в том формате действий, который ему доступен.

Конечно, представления о сложности и о «большести» конкретного объекта анализа и исследования изменяются по мере изменения форматов знаний и действий субъекта деятельности. Тем не менее приведенные определения большой системы по В.И. Чернецкому, и сложной системы по А.И. Бергу справедливы для любого объекта современного анализа и исследований.

Постулат 9 «об общей модели объекта деятельности» для сложного объекта деятельности можно для данного случая сформулировать следующим образом:

Для формирования и реализации целостной деятельности формирование и реализацию сложной системы-объекта деятельности необходимо осуществлять с помощью общей модели целого в виде совокупности моделей систем, отражающих различные подходы к моделированию систем-объектов различной природы.

Для большого объекта деятельности, который мы, в соответствии с принятыми определениями, считаем большим, постулат 9 «об общей модели объекта деятельности» можно сформулировать следующим образом:

Для формирования и реализации целостной деятельности формирование и реализацию большой системы-объекта деятельности необходимо осуществлять с помощью общей модели целого в виде совокупности взаимосвязанных моделей систем, описывающей все части данной системы-объекта.

● Для систематизации изучения систем с позиций метода системной технологии сформулируем аналогичные результаты для субъекта, результата и триады деятельности.

С позиций системной технологии у объекта деятельности один основной вид деятельности – производство результата, необходимого среде для решения актуализировавшейся проблемы. При этом, как показано в главе 1, у объекта деятельности, кроме миссионерской цели – обеспечить производство результата в соответствии с определенными требованиями, возникают и собственные цели выживания, сохранения и развития.

● В данной триаде деятельности «объект-субъект-результат» назначение субъекта деятельности — воздействовать на объект деятельности таким образом, чтобы обеспечить баланс деятельности в интересах миссионерской и собственной целей объекта деятельности. Для реализации этого назначения субъект деятельности должен осуществлять разные по своей природе виды деятельности по отношению к объекту и его взаимодействию с внешней средой – анализ, исследование, проектирование, управление, мониторинг (контроль), экспертизу (в том числе и аудит), а также деятельность разрешительную (лицензирование) и деятельность по архивированию (хранению информации).

Возможно построение субъекта деятельности в виде сложного или большого субъекта и, соответственно, – моделирование субъекта с помощью сложной или большой систем.

В случае сложного субъекта деятельности постулат 10 «об общей модели субъекта деятельности» целостного метода системной технологии можно сформулировать следующим образом:

Для формирования и реализации целостной деятельности формирование и реализацию сложной системы-субъекта деятельности необходимо осуществлять с помощью общей модели целого, представляющей собой совокупность моделей системы-аналитика, системы-исследователя, системы-проектировщика, системы управления, системы контроля (мониторинга), экспертной системы (в том числе и системы-аудитора), а также системы лицензирования и системы-архиватора (системы хранения информации).

Отличия каждой из указанных моделей от любой другой из данной совокупности моделей проявляются в связи с совершенно разными «природами» каждой из этих видов деятельности. Так, природа анализа кардинально отличается от природы управления, природа мониторинга – от природы аудита и т.д. В то же время все эти виды деятельности системы-субъекта тесно взаимосвязаны между собой и отсутствие одной из указанных моделей приведет к неадекватному отражению субъекта в модели сложной системы.

Во втором случае большого субъекта деятельности постулат 10 будет выглядеть следующим образом (на примере системы управления):

Для формирования и реализации целостной деятельности формирование и реализацию большой системы-субъекта управления необходимо осуществлять с помощью общей модели целого в виде совокупности взаимосвязанных моделей систем управления производством, анализом, исследованиями, проектами, мониторингом, экспертизой, лицензированием, информацией, каждая из которых может быть, в свою очередь, большой системой.

● В данной триаде деятельности «объект-субъект-результат» назначение результата деятельности — обеспечить решение некоторой проблемы, актуализировавшейся в среде деятельности, в связи с чем возникла необходимость производства данного результата.

Указанные результаты могут быть большими и/или сложными и, соответственно, возможно моделирование субъекта с помощью сложной и/или большой систем.

В случае сложного результата деятельности постулат 11 «об общей модели результата деятельности» целостного метода системной технологии можно сформулировать следующим образом:

Для формирования и реализации целостной деятельности формирование и реализацию сложной системы-результата деятельности необходимо осуществлять с помощью общей модели целого, представляющей собой совокупность моделей систем, отражающих различные подходы к природе влияния результата деятельности на состояние проблемы, для решения которой возникла необходимость производства данного результата.

Так, производство обществом нового духовного учения, направленного, по исходному замыслу, на борьбу со снижением духовного потенциала общества, может оказывать влияния разной природы. У одной части общества этот учение может вызвать протест, что означает наличие в результате модели формирования протеста. В указанном учении есть, конечно, и модель повышения духовности. В нем может содержаться модель формирования нетерпимости к другим учениям и многие другие модели.

Все эти виды природы воздействий системы-результата тесно взаимосвязаны между собой и отсутствие одной из указанных моделей приведет к неадекватному отражению результата в его модели, как сложной системы.

Искусство моделирования данного результата состоит в создании совокупности всех моделей результата, как целого, т.е. общей модели целого. Только при этом условии можно адекватно оценить, соответствует ли воздействие данного результата исходному замыслу.

Во втором случае большого результата деятельности постулат 11 будет выглядеть следующим образом:

Для формирования и реализации целостной деятельности формирование и реализацию большой системы-результата управления необходимо осуществлять с помощью общей модели целого, представляющей собой совокупность моделей систем, отражающих влияния различных частей системы-результата деятельности на состояние проблемы, для решения которой возникла необходимость производства данного результата.

Назначение триады деятельности — обеспечить производство результата для наилучшего, в смысле определенного критерия, решения некоторой конкретной проблемы, актуализировавшейся в среде деятельности.

Триады деятельности являются сложными, а, при соблюдении определенных условий, – большими. Соответственно, возможно моделирование триады с помощью сложной и/или большой систем.

В случае сложной триады деятельности постулат 12 «об общей модели триады деятельности» целостного метода системной технологии можно сформулировать следующим образом:

Для формирования и реализации целостной деятельности формирование и реализацию сложной триады деятельности необходимо осуществлять с помощью общей модели целого, представляющей собой совокупность таких моделей, которую отражают разные по природе виды представлений о ее функционировании.

Так, металлургическая производственная триада «субъект-объект-результат» деятельности может рассматриваться с разных позиций, как система производства металла, как участник системы биржевой торговли металлом, как социальная система, как экологическая система, как финансовая система и т.д. Все эти представления отражают «разные природы» строения и функционирования триады и описываются, конечно, совершенно разными моделями.

Но все эти разные по своей природе описания триады тесно взаимосвязаны между собой и отсутствие одной из указанных моделей приведет к неадекватному отражению деятельности триады в ее модели, как сложной системы.

Во втором случае большого результата деятельности постулат 12 будет выглядеть следующим образом:

Для формирования и реализации целостной деятельности формирование и реализацию триады деятельности, как большой системы, необходимо осуществлять с помощью общей модели целого, представляющей собой совокупность таких моделей ее частей, как модели системы-объекта, системы-субъекта, системы-результата.

Так, система-объект металлургической производственной системы – технология производства какого-либо металла, система-субъект производственной системы – напр., система управления производством металла и система-результат производства – металл определенной марки имеют разную природу строения и функционирования и описываются, конечно, совершенно разными моделями.

Но все эти разные по своей природе составляющие триады тесно взаимосвязаны между собой и отсутствие одной из указанных моделей приведет к неадекватному отражению деятельности триады в ее модели, как большой системы.

Искусство моделирования триады деятельности, как сложного и большого объекта, включает три действия:

– создание, с одной стороны, целой совокупности разных по своей природе описаний самой триады, как целого сложного объекта моделирования,

– создание целой совокупности всех трех моделей составляющих триады, как целого большого объекта моделирования,

– объединения этих целых совокупностей в общей модели триады, как целого сложного и большого объекта моделирования.

Только при этом условии можно адекватно оценить, соответствует ли функционирование данной триады исходному замыслу.

● Нетрудно видеть, что все данные здесь определения большой, сложной систем, системы-объекта, системы-субъекта, системы-результата, системы-триады являются частными случаями общих определений системы и системности, принятых здесь с позиций целостного подхода:

система – это совокупность способов и/или средств обеспечения взаимодействия внутренней среды элементов (частей) системы с внешней средой системы;

системность – это целостность элемента (части) системы по отношению к данной системе; системность это целостность первого типа;

система системна, т.е. обладает свойством целостности, как правило, только первого типа – свойством целостности по отношению к другой системе, в которую она входит, как элемент (часть) этой другой системы.

● Итак, системы, также как и целое, являются совокупностью частей среды. Но не всегда системы при создании ориентированы на собственное выживание, сохранение и развитие. Скорее, они создаются для обеспечения выживания, сохранения и развития других частей среды. Например, системы государственного управления создаются, по замыслу, для обеспечения выживания, сохранения и развития нации, страны.

Но когда системы уже реализовались, как совокупности частей среды, в них, как в совокупностях частей среды, начинают реализовываться основной Закон целого – целое действует в направлении собственного выживания, сохранения и развития) и постулаты целого. Не сразу, конечно, а когда системы уже «состоятся», т.е. когда сформируется код-ядро системы, как целого.

Так, состоявшиеся системы государственного управления начинают действовать в интересах собственного выживания, сохранения и развития (разрастание аппарата, коррупция, взяточничество и т.д.).

Но система, в интересах собственного выживания, сохранения и развития, как целого, должна стать целостной в смысле постулата 3 «баланса факторов целого и целостности».

Поэтому возникает необходимость в механизмах, которые позволяют системе, как целому, быть целостной, реализовать модели, Принципы и Законы целостности и развития целостности.

С позиций целостного метода системной технологии можно заключить, что:

13.К.Маркс, Ф.Энгельс. Соч., 2-е изд.,т.23.
14.В.И. Ленин. Полное собрание сочинений. Издание 5-е, т.42.
15.Богданов А.А. Всеобщая организационная наука (тектология). В 2-х т. – М.: Экономика, 1989, т.1 – 304 с., т.2 – 351 с.
16.Одум Ю. Основы экологии. М: Мир, 1975, 742с.
17.Bertalanffy L. von (ed) General Systems Theory; Foundation; Development, Applications, Georgy Braziller, Inc., New York, 1969, pp 290.
18.Винер Н. Кибернетика или управление и связь в животном и машине (второе издание). М., Наука, 1983, 341 с.
19.Vernadsky W.I. Problems in biogeochemistry. II. Trans. Conn. Acad. Arts Sci., 1944, 35, 493-494; Vernadsky W.I. The biosphere and the noosphere. Amer. Sci., 1945, 33, 1-12.
20.Чернецкий В.И. Большие системы и управление. Изд. ЛВВИКА им. А.Ф. Можайского, Ленинград, 1969, с. 4.

Бесплатный фрагмент закончился.

Бесплатно
49,90 ₽

Начислим

+1

Покупайте книги и получайте бонусы в Литрес, Читай-городе и Буквоеде.

Участвовать в бонусной программе
Возрастное ограничение:
0+
Дата выхода на Литрес:
01 февраля 2010
Объем:
247 стр. 12 иллюстраций
Правообладатель:
Автор
Формат скачивания: