Искусство мыслить рационально. Шорткаты в математике и в жизни

Текст
Читать фрагмент
Отметить прочитанной
Как читать книгу после покупки
Шрифт:Меньше АаБольше Аа

Паттерны городские

Вот чуть более трудная последовательность чисел. Сможете ли вы найти паттерн в ней?

179, 430, 1033, 2478, 5949 …

Здесь нужно разделить каждое число на предыдущее. Коэффициент получается равным 2,4. Это по-прежнему экспоненциальный рост, но интересно не это, а то, что́ на самом деле выражают эти числа.

Это количество патентов, выданных в городах с населением 250 000, 500 000, 1 миллион, 2 миллиона и 4 миллиона человек. Оказывается, что при удвоении населения города число патентов не просто удваивается, как можно было бы предположить. Чем крупнее город, тем более творческим он кажется. По-видимому, удвоение численности населения добавляет к творческому потенциалу лишние 40 процентов! И такой паттерн роста проявляется не только в патентах.

Несмотря на огромные культурные различия между Лондоном, Рио-де-Жанейро и Гуанчжоу, существует математический паттерн, связывающий все города от Бразилии до Китая. Мы привыкли описывать их, опираясь на особенности их географического положения и истории, подчеркивая индивидуальные отличия каждого места – Нью-Йорка или Токио. Но это всего лишь детали, интересные случайности, мало что объясняющие. Если же взглянуть на город глазами математика, начинают проявляться универсальные черты, не зависящие от политических и географических границ. Эта математическая точка зрения позволяет понять, чем именно привлекают нас города… и доказывает, что чем больше, тем лучше.

Математика показывает, что рост каждого из ресурсов города можно описать одним-единственным волшебным числом, характерным для этого ресурса. При каждом удвоении численности населения города его социальные и экономические параметры тоже увеличиваются, но не просто вдвое, а чуть больше. Замечательно, что для многих ресурсов это «чуть больше» составляет около 15 процентов. Например, если сравнить город с населением 1 миллион человек с городом с населением 2 миллиона, то окажется, что ресторанов, концертных залов, библиотек, школ в более крупном городе больше не в два раза: их количество больше удвоенного на 15 процентов.

Это правило масштабирования затрагивает даже зарплаты. Если взять двух работников, выполняющих в точности одну и ту же работу, но в городах разных размеров, то зарплата работника, живущего в городе с населением 2 миллиона, в среднем будет на 15 процентов выше, чем у работника из города, в котором всего 1 миллион жителей. Если удвоить численность населения еще раз, до 4 миллионов человек, зарплата увеличится еще на 15 процентов. Чем крупнее город, тем больше вы получаете, хотя работа остается той же самой.

Выявление таких паттернов может стать ключевым фактором, позволяющим компании извлечь максимальную прибыль из капиталовложений. Города бывают самых разных форм и размеров. Понимание того, что форма не важна, а размер имеет значение, дает компании возможность вкладывать средства гораздо более рационально, просто переехав в город в два раза большего размера.

Этот странный всеобщий принцип масштабирования был открыт не экономистами или социологами, а физиком-теоретиком, использовавшим те же математические методы анализа, которые обычно применяют в исследованиях фундаментальных законов, лежащих в основе Вселенной. Джеффри Уэст, родившийся в Великобритании, изучал физику в Кембридже, а затем работал в Стэнфорде, занимаясь исследованиями свойств элементарных частиц. Но к открытиям в области роста городов его подтолкнул переход на должность президента Института Санта-Фе. Этот институт специализируется на программах, позволяющих взаимодействовать и обсуждать идеи специалистам, работающим в разных дисциплинах. Шорткат к разрешению загадок в одной области очень часто бывает ответвлением, которое проходит через какую-нибудь другую область, на первый взгляд совершенно не связанную с первой.

Именно та смесь математики, физики и биологии, которая бурлила в Институте Санта-Фе, заставила Уэста задуматься над следующим вопросом: существуют ли у городов, разбросанных по всему миру, универсальные характеристики, подобные универсальным свойствам электронов или фотонов, не зависящим от того, в какой точке Вселенной они находятся?

Нетрудно поверить, что математика лежит в основе фундаментальных законов мироздания, что при помощи математики можно объяснить гравитацию или электричество. И вместе с тем город кажется непостижимой массой людей, у каждого из которых свои мотивации, свои желания, свои повседневные дела. Но, когда мы пытались разобраться в окружающем нас мире, мы выяснили, что математика – это код, управляющий не только нашим миром и всем, что в нем содержится, но и нами самими. Даже силы, управляющие суматошным существованием миллионов индивидуумов, тоже подчиняются неким паттернам.

Уэст и его сотрудники собрали данные по тысячам городов всего мира. Они учитывали все, от суммарной длины электрических кабелей во Франкфурте до числа людей с высшим образованием в городе Бойсе, штат Айдахо. Они регистрировали статистические данные по автозаправочным станциям, личным доходам, вспышкам гриппа, убийствам, кофейням и даже скорости передвижения пешеходов. Однако не всю эту информацию можно было найти в Сети. Когда Уэст пытался расшифровать объемистый справочник по провинциальным городам Китая, ему приходилось разбирать надписи на севернокитайском языке. Когда накопленные числа стали анализировать, начал проявляться скрытый код. Если численность населения одного города была вдвое больше, чем у другого, в каких бы точках мира эти города ни находились, в соотношении социальных и экономических факторов обнаруживалось одно и то же волшебное число – дополнительные 15 процентов[18].

Сейчас в городах живет более 50 процентов мирового населения. Та добавка к экспоненциальному росту, которую дает коэффициент масштабирования Уэста, вполне может быть ключевым элементом привлекательности городов. По-видимому, когда большое количество людей оказывается вместе, получаемые результаты становятся больше, чем изначальные вложения. Вероятно, поэтому люди и переезжают в большие города. Когда человек перебирается в город вдвое большего размера, он внезапно начинает получать на 15 процентов больше – во всех областях.

Тот же закон масштабирования затрагивает и инфраструктуру, но в обратном направлении. Оказывается, при удвоении размера города не требуется вдвое больше материалов: действует экономия на инфраструктуре. Стоимость медного провода, асфальта, канализационных труб на душу населения уменьшается на 15 процентов. Это означает, что вопреки распространенному мнению и ваш личный «углеродный след» оказывается тем меньше, чем крупнее город, в котором вы живете.

К сожалению, этот математический принцип определяет масштабирование не только положительных аспектов. Преступность, заболеваемость и плотность дорожного движения возрастают с тем же коэффициентом. Если, к примеру, вам известен уровень заболеваемости СПИДом в городе с 5-миллионным населением, то для оценки этого же показателя для города, в котором живут 10 миллионов человек, первую цифру нужно не просто удвоить, а еще и добавить к результату 15 процентов. Все те же волшебные 15 процентов.

Есть ли объяснение такому универсальному масштабированию самых разных городов? Существует ли что-то вроде ньютоновского закона всемирного тяготения, применимого ко всему на свете – от яблок до планет и черных дыр?

Чтобы понять, почему город определяется не физическими размерами, а численностью населения, важнее всего осознать, что город состоит не из зданий и улиц, а из людей, которые в нем живут. Город – это сцена, на которой разыгрывается история цивилизации, и разыгрывают ее не актеры, а акторы. Города ценны постольку, поскольку они выполняют функцию сетей, обеспечивающих возможность взаимодействия между людьми.

Значит, модель города должна отражать не его географическое положение, будь то на острове или посреди пустыни, а сетевую структуру взаимодействий его жителей. По-видимому, свойство универсальной масштабируемости, открытое Уэстом, определяется именно качеством сети, возникающей из взаимодействий горожан. Таково могущество математики. Она позволяет увидеть простые структуры, находящиеся в самом сердце нашей сложной среды.

Если взять предельный случай – когда по мере роста города каждый житель контактирует со всеми остальными, – можно увидеть, почему крупный город порождает сверхлинейный рост. Если численность его населения равна N, максимальным числом связей между ними будет количество разных рукопожатий, которые могут совершить эти N жителей. Выстроим их в ряд и пронумеруем от 1 до N. Горожанин номер 1 проходит вдоль ряда, пожимая всем руки, – всего N – 1 рукопожатий. После него вдоль ряда проходит горожанин номер 2. Он уже пожал руку горожанину № 1, так что он прибавляет к сумме N – 2 рукопожатий. Так продолжается и дальше, и на долю каждого следующего горожанина приходится на одно рукопожатие меньше. Общее число рукопожатий равно сумме чисел от 1 до N – 1. Давно не виделись! Это то самое вычисление, которое задали Гауссу. Его шорткат дал формулу для вычисления этого числа:

1/2 × (N – 1) × N.

Что происходит с количеством связей при удвоении N? Число рукопожатий не удваивается, а увеличивается в 2 в квадрате – то есть 4 – раза. Число рукопожатий пропорционально квадрату числа жителей города.

 

Этот пример прекрасно показывает, почему математика может избавить нас от необходимости снова и снова изобретать колесо. Хотя я задал совершенно другой вопрос, касавшийся связей в сети, оказалось, что для анализа роста этого числа у меня уже есть инструменты, полученные из анализа треугольных чисел. Действующие лица могут то и дело меняться, но сценарий остается тем же. Стоит понять этот сценарий, и в вашем распоряжении оказывается шорткат к пониманию поведения любых персонажей пьесы. В данном случае число связей между горожанами растет с увеличением их количества квадратично.

Разумеется, каждый житель города никак не может быть знаком со всеми остальными. Более консервативной гипотезой будет предположение о том, что горожане знакомы с жителями своего района. Но эта величина масштабируется линейно; общие размеры не имеют существенного значения.

Судя по всему, связи между жителями городов находятся где-то между этими двумя предельными случаями. Горожанин поддерживает все свои местные связи плюс несколько более дальних связей в других частях города. По-видимому, именно такие дальние связи и приводят к тому, что при удвоении численности населения количество связей увеличивается на лишние 15 процентов. Как я объясню в последующих разделах этой книги, сети такого типа возникают во многих разных сценариях, и это обстоятельство оказывается чрезвычайно удобным для прокладки шорткатов.

Паттерны обманчивые

Хотя паттерны обладают невероятной силой, использовать их следует с осторожностью. Вы можете отправиться по такому пути, считая, что, вероятно, знаете, куда вы идете. Но иногда этот путь может завернуть в странном и неожиданном направлении. Возьмем ту последовательность, которую я предлагал вам решить раньше:

1, 2, 4, 8, 16 …

Что, если я скажу вам, что следующее число в этой последовательности – не 32, а 31?

Если взять круг, отмечать на его окружности точки и соединять все эти точки прямыми линиями, каково будет максимальное число областей, на которые можно разделить этот круг? Если точка всего одна, никаких линий не будет и область получится тоже всего одна. Если добавить еще одну точку, две точки можно соединить линией, которая разделит круг на две области. Добавим третью точку. Проведя все возможные линии, соединяющие эти точки, получим треугольную фигуру, окруженную тремя секторами круга: всего четыре области.

Рис. 1.1. Первые пять чисел деления круга


Если продолжить действовать таким же образом, кажется, что проявляется паттерн. Вот данные по числу областей, получающихся при добавлении очередных точек на окружности:

1, 2, 4, 8, 16 …

В этот момент разумно предположить, что добавление очередной точки удваивает число областей. Проблема заключается в том, что этот паттерн нарушается, как только я добавляю шестую точку. Как ни старайся, число областей, на которые линии разбивают круг, оказывается равным 31. А вовсе не 32!


Рис. 1.2. Шестое число деления круга


Для числа областей существует формула, но она чуть сложнее, чем простое удвоение. Если на окружности есть N точек, максимальное число областей, которые можно получить, соединяя эти точки, равно

1/24 (N4 – 6N3 + 23N2 – 18N + 24).

Мораль тут следующая: важно знать, что именно описывают ваши данные, а не полагаться на одни лишь числа. Обработка данных может быть делом опасным, если она не сочетается с глубоким пониманием того, откуда взялись эти данные.

Вот еще одно предостережение относительно шорткатов такого рода. Каким должно быть следующее число в этой последовательности?

2, 8, 16, 24, 32 …

В ней много степеней двух. Но что там делает число 24? В общем, если вы сумели заключить, что следующее число этой последовательности – 47, я советую вам в ближайшую же субботу купить лотерейный билет. Это выигрышные номера тиража британской Национальной лотереи, разыгранного 26 сентября 2007 года. Мы настолько пристрастились к поиску паттернов, что часто видим их там, где никакого паттерна ожидать нельзя. Лотерейные билеты выпадают случайным образом. Без паттернов. Без тайных формул. Шорткатов к миллионным состояниям не бывает. Однако в главе 8 я объясню, что даже случайные вещи следуют неким паттернам, которые можно рассматривать в качестве потенциальных шорткатов. Если речь идет о случайностях, шорткатом будет рассмотрение долгосрочной перспективы.

Концепцию паттерна можно использовать в качестве шортката к пониманию того, действительно ли какое-либо явление случайно, и этот метод имеет отношение к легкости запоминания числовых последовательностей.

Шорткат к хорошей памяти

Поскольку в интернете каждую секунду появляется огромное количество данных, компании ищут более рациональные способы их хранения. Выявление паттернов в данных облегчает их сжатие, благодаря которому для их хранения требуется меньше места. Именно эта идея лежит в основе технологий, подобных форматам JPEG или MP3.

Возьмем изображение, составленное только из черных и белых пикселей. В любом таком изображении где-нибудь может быть большой участок, состоящий из сплошных белых пикселей. Можно не описывать по отдельности каждый белый пиксель, используя для сохранения изображения такое же количество памяти, которое требуется для всех его данных, а прибегнуть к шорткату. Тогда нужно записать информацию о местоположении границы области белых пикселей и просто добавить указание закрасить эту область белым. Как правило, программный код, который я могу написать для такого закрашивания, займет гораздо меньше места, чем записи о каждом белом пикселе этой области.

Любые паттерны такого рода, которые можно обнаружить в пикселях, пригодны для написания кода, благодаря которому для записи изображения потребуется намного меньше памяти, чем для сохранения данных каждого пикселя по отдельности. Возьмем, к примеру, шахматную доску. В ее изображении есть чрезвычайно явный паттерн, позволяющий нам написать программу, просто повторяющую комбинацию из черной и белой клеток 32 раза. Эта программа не будет больше даже для доски огромного размера.

Я полагаю, что такие паттерны лежат и в основе того способа, которым человек запоминает данные. Должен признаться, что у меня очень плохая память. Я думаю, это было одной из причин, по которым меня привлекла математика. Математика всегда была моим оружием против ужасной памяти на имена, даты и случайные сведения, в которых я не могу найти логики. На уроках истории я понятия не имел, в каком году умерла королева Елизавета I; если мне говорили, что это случилось в 1603 году, я забывал эту дату уже через десять минут. На французском мне было трудно запомнить все формы неправильного глагола aller[19]. На химии я постоянно забывал, что именно горит фиолетовым пламенем – калий или натрий. Но, когда речь шла о математике, я мог восстановить любую информацию, опираясь на паттерны и логику, которые я находил в этой дисциплине.

Я подозреваю, что это один из способов, которые мы используем для запоминания. Память опирается на способность нашего мозга выявлять паттерны и структуры, что помогает сохранять сжатую программу, на основе которой можно восстанавливать воспоминания. Вот вам маленькая задачка. Посмотрите на заштрихованные клетки в показанной ниже таблице размером 6 × 6. Затем закройте книгу. Можете ли вы воспроизвести эту таблицу по памяти? Тут важно не пытаться запомнить каждую из 36 клеток изображения по отдельности, а найти паттерн, который поможет вам восстановить все изображение.


Рис. 1.3. Можете ли вы запомнить расположение заштрихованных клеток?


Хотя доля заштрихованных клеток на этом изображении приблизительно та же, что и доля черных клеток на шахматной доске размером 6 × 6, из-за отсутствия явного паттерна запомнить их расположение гораздо труднее. Чтобы получить это изображение, я подбрасывал монету и заштриховывал те клетки, для которых она выпадала орлом. С математической точки зрения вероятность получения рисунка, аналогичного шахматной доске, с регулярным чередованием орлов и решек, равна вероятности случайного расположения заштрихованных клеток. Однако рисунок шахматной доски намного легче запомнить.

Если вам удается выявить в изображении паттерн, вы можете записать инструкцию воспроизведения этого изображения. В математике такую инструкцию называют алгоритмом. Оценка размеров алгоритма, необходимого для запоминания изображения, дает довольно точную меру случайности этого изображения. Рисунок шахматной доски обладает высокой упорядоченностью. Алгоритм его воспроизведения занимает мало места. Для изображения, созданного путем подбрасывания монеты, вероятно, потребуется алгоритм не меньший, чем запись содержания каждой из 36 клеток таблицы по отдельности.

Можно заметить, что из фотографии, изображающей сцену с очевидным сюжетом, получается файл формата JPEG гораздо меньшего размера, чем исходное изображение, а картинка, состоящая из случайных пикселей, не становится меньше, если попытаться сжать ее алгоритмом JPEG: в ней нет паттернов, помогающих сжатию.

Кто бы и что бы, будь то человек или машина, ни запоминал что-либо, они прибегают к математической стороне своего разума. Запоминание требует обнаружения в данных, которые мы пытаемся сохранить, паттернов, связей, ассоциаций и логики. Паттерны – это шорткат к хорошей памяти.

Со ступеньки на ступеньку

Вернемся к вопросу, который я задал в начале этой главы. Сколько существует способов подняться на пролет из 10 ступенек, если использовать комбинации шагов на одну ступеньку (одинарных) и на две ступеньки (двойных)? К решению этой задачи можно подойти несколькими разными путями. Один из них – просто начать выписывать в случайном порядке разные варианты. При таком несистематическом подходе некоторые возможности наверняка будут пропущены, а чтобы записать их все, понадобится много времени. Нет ли стратегии получше?

Чуть более систематическим будет следующий подход. Начнем с одних лишь одинарных шагов. С ними решение только одно: 1111111111. Затем добавим к одинарным шагам один двойной. Тогда нужно сделать в общей сложности девять шагов – восемь одинарных и один двойной, причем каким по счету будет двойной шаг, можно выбирать. Этот двойной шаг можно сделать в девяти разных местах.

Эта стратегия кажется перспективной. На следующем этапе можно рассмотреть комбинации с двумя двойными шагами, перемешанными с шестью одинарными. В этом варианте подъем совершается за восемь шагов. Но придется вычислить, сколько существует вариантов выбора, то есть какой из восьми шагов будет двойным. Один двойной шаг можно сделать в восьми разных местах, а второй – в семи оставшихся после первого. Создается впечатление, что число возможных вариантов – 8 × 7. Но тут нужно действовать осторожно, потому что на самом деле мы учли одни и те же варианты дважды. Можно назначить первый двойной шаг на положение № 1, а второй – на положение № 2, а можно сделать наоборот. Результат от этого не изменится. Поэтому суммарное число возможных вариантов равно (8 × 7)/2 = 28. Собственно говоря, у этого числа есть особое математическое название. Оно называется числом сочетаний из 8 по 2 и обозначается следующим образом[20]:



В более общем случае число вариантов выбора двух чисел из N + 1 чисел вычисляется по формуле 1/2 N(N + 1) – той же самой формуле, которую Гаусс использовал для треугольных чисел. Снова то же самое колесо, которое мы уже изобрели! Задачу о выборе двух чисел из N + 1 действительно можно свести к задаче вычисления треугольных чисел. В главе 3 я покажу, каким прекрасным шорткатом к решению одной задачи часто может быть ее преобразование в другую.

 

Эти инструменты для вычисления количества вариантов выбора, называемые биномиальными коэффициентами, были и в числе тех формул, которые Гаусс и помощник его учителя Бартельс вместе разбирали в своих книгах по алгебре.

Но чтобы решить нашу головоломку, на следующем этапе нужно вычислить, какими способами можно выбрать три места для трех двойных шагов по лестнице из семи возможных. Хотя этот метод кажется разумным и систематическим, нам нужно будет придумывать все новые формулы для включения в подъем по лестнице все большего числа двойных шагов. Эта работа начинает казаться трудоемкой и медленной – совсем не такой, каким должен быть шорткат.

Поэтому я опишу более удобный способ, основанный на том, о чем я рассказывал в этой главе. Очень действенной стратегией для решения таких головоломок мне кажется следующая: нужно рассмотреть малое количество ступенек и выяснить, есть ли в получающихся для них числах какой-нибудь паттерн.

Вот все варианты для лестниц из 1, 2, 3, 4 и 5 ступенек, которые можно быстро перебрать вручную:

1 ступенька: 1.

2 ступеньки: 11 или 2.

3 ступеньки: 111 или 12 или 21.

4 ступеньки: 1111 или 112 или 121 или 211 или 22.

5 ступенек: 11111 или 1112 или 1121 или 1211 или 2111 или 122 или 212 или 221.

Последовательность количества вариантов выглядит так: 1, 2, 3, 5, 8… Возможно, вы уже заметили паттерн. Следующее число получается сложением двух предыдущих. Возможно, вы даже знаете, как называются эти числа. Это же числа Фибоначчи! Они названы в честь математика XII века, открывшего, что эти числа – ключ к процессам роста природных объектов. Цветочных лепестков, сосновых шишек, ракушек, популяций кроликов. Все эти числа, по-видимому, следуют одному и тому же паттерну.

Фибоначчи открыл, что процессы роста в природе следуют одному простому алгоритму. Правило сложения двух предыдущих чисел – это шорткат природы к созданию сложных структур, например ракушек, шишек или цветков. Каждый организм использует две последние созданные им вещи в качестве ингредиентов для следующего шага.


Рис. 1.4. Построение спирали при помощи чисел Фибоначчи


Использование паттернов в развитии структур – ключевой шорткат природы. Взять, например, тот способ, которым природа создает вирус. Вирусы обладают чрезвычайно симметричной структурой. Связано это с тем, что алгоритм создания симметричной структуры прост. Если вирус имеет форму симметричного кубика, то ДНК, которая воспроизводит эту молекулу, нужно создать лишь несколько экземпляров одного и того же белка, образующего грани кубика, а затем вся структура вируса может быть построена по тому же правилу. Никакие особые инструкции для разных граней не требуются. Паттерн позволяет строить вирус быстро и рационально, что и делает его таким смертельно опасным.

Но можем ли мы быть уверены, исходя из столь малого количества данных, что секрет подъема по лестнице действительно скрыт в числах Фибоначчи?

На самом деле правило точно объясняет, как вычислить количество вариантов для следующего этапа, лестницы из 6 ступенек. Нужно взять все возможные варианты для четырех ступенек и прибавить в конце по двойному шагу. Или взять все возможные варианты для пяти и прибавить к ним по шагу одинарному. Это дает все возможности для шести ступенек. Получается сочетание двух предыдущих чисел последовательности.

Чтобы получить ответ на исходную головоломку, нужно вычислить десятый член последовательности.

1, 2, 3, 5, 8, 13, 21, 34, 55, 89

Существует 89 разных вариантов. Этот паттерн – шорткат к вычислению количества возможных способов подъема до вершины лестницы. И этот же паттерн позволяет решить эту задачу, даже если ступенек будет 100 или 1000.

Хотя эти числа названы в честь Фибоначчи, первым их открыл не он. Это были индийские музыканты, игравшие на табла[21]. Они издавна состязались друг с другом, щеголяя разными ритмами, которые им удавалось извлекать из своих барабанов. По мере исследования разных типов ритмов, которые получались из долгих и кратких тактов, они и пришли к числам Фибоначчи.

Если долгий такт в два раза длиннее краткого такта, то количество ритмов, которые может составить из них музыкант, играющий на табла, будет таким же, что и количество вариантов подъема по лестнице. Каждый одинарный шаг соответствует краткому такту, а каждый двойной шаг – долгому. Значит, число возможных ритмов определяется правилом Фибоначчи. Более того, это же правило дает музыканту алгоритм построения новых ритмов из уже существующих более коротких.

В том обстоятельстве, что один и тот же паттерн объясняет столь разнородные явления, есть нечто потрясающее. Фибоначчи полагал, что это закон роста в природе. С точки зрения индийских музыкантов, игравших на табла, этот паттерн порождает ритмы. Он же позволяет получить число вариантов подъема по лестнице одинарными и двойными шагами. Есть даже некоторые финансовые аналитики, считающие, что эти числа можно использовать для предсказания момента, в который падающий курс акций достигнет нижней точки и снова начнет расти. Этот финансовый паттерн не вполне бесспорен и уж точно не универсален, но некоторым инвесторам удается применять его для принятия правильных решений. Столь действенным делает шорткат способность выявить фундаментальную структуру, скрытую за самыми разными фасадами. Один и тот же паттерн может дать решения множеству кажущихся совершенно разными задач. Когда приступаешь к решению новой задачи, часто бывает полезно проверить, не сводится ли она к старой задаче, решение которой вы уже нашли.

18Подробнее о вопросах масштабирования и исследованиях Уэста можно прочитать в его книге: Уэст Дж. Масштаб: Универсальные законы роста, инноваций, устойчивости и темпов жизни организмов, городов, экономических систем и компаний / Пер. с англ. Д. А. Прокофьева. М.: Азбука Бизнес, Азбука-Аттикус, 2018.
19Идти (фр.).
20Другое широко применяющееся обозначение – C28 («C из 8 по 2»).
21Табла – небольшой парный барабан, используемый в традиционной североиндийской музыке.
Купите 3 книги одновременно и выберите четвёртую в подарок!

Чтобы воспользоваться акцией, добавьте нужные книги в корзину. Сделать это можно на странице каждой книги, либо в общем списке:

  1. Нажмите на многоточие
    рядом с книгой
  2. Выберите пункт
    «Добавить в корзину»