Нейтронные звезды. Как понять зомби из космоса

Текст
Из серии: Элементы 2.0
Читать фрагмент
Отметить прочитанной
Как читать книгу после покупки
Нет времени читать книгу?
Слушать фрагмент
Нейтронные звезды. Как понять зомби из космоса
Нейтронные звезды. Как понять зомби из космоса
− 20%
Купите электронную и аудиокнигу со скидкой 20%
Купить комплект за 1228  982,40 
Нейтронные звезды. Как понять зомби из космоса
Нейтронные звезды. Как понять зомби из космоса
Аудиокнига
Читает Игорь Гмыза
679 
Синхронизировано с текстом
Подробнее
Нейтронные звезды. Как понять зомби из космоса
Шрифт:Меньше АаБольше Аа

Моим сыновьям Тиму и Гаю



Памяти Фрица Цвикки


ЭЛЕМEHTЫ 2.0

KATIA MOSKVITCH

NEUTRON STARS

THE QUEST TO UNDERSTAND THE ZOMBIES OF THE COSMOS

Перевод с английского

Инны Кагановой и Татьяны Лисовской

Издание осуществлено при поддержке “Книжных проектов Дмитрия Зимина”

Published by arrangement with Harvard University Press


© 2020 by the President and Fellows of Harvard College

© И. Каганова (пролог, гл. 1–5, благодарности), Т. Лисовская (гл. 6–9, эпилог), перевод на русский язык, 2023

© А. Бондаренко, художественное оформление, макет, 2023

© ООО “Издательство ACT”, 2023

Издательство CORPUS ®



Книжные проекты Дмитрия Зимина

Эта книга издана в рамках программы “Книжные проекты Дмитрия Зимина” и продолжает серию “Библиотека фонда «Династия»”. Дмитрий Борисович Зимин – основатель компании “Вымпелком” (Beeline), фонда некоммерческих программ “Династия” и фонда “Московское время”.

Программа “Книжные проекты Дмитрия Зимина” объединяет три проекта, хорошо знакомых читательской аудитории: издание научно-популярных книг “Библиотека фонда «Династия»”, издательское направление фонда “Московское время” и премию в области русскоязычной научно-популярной литературы “Просветитель”.

Подробную информацию о “Книжных проектах Дмитрия Зимина” вы найдете на сайте ZIMINBOOKPROJECTS.RU

Пролог

“Я собирался рассказать вам нечто потрясающее. В вашей карьере это станет самым важным событием”, – сообщил мне Мэтью Бейлз, астроном из Технологического университета Суинберна в Австралии, 6 сентября 2017 года, предлагая подвезти меня домой. Теплый вечер, только что закончилась бесконечно длинная конференция, проходившая вблизи Манчестера в обсерватории Джодрелл-Бэнк в Англии. Здание, где проходили заседания, расположено поблизости от величественного телескопа Lovell. Конференция посвящалась пятидесятой годовщине открытия радиопульсаров – далеких, быстро вращающихся космических объектов, источников мощного излучения. Их обнаруживают по всплескам радиоволн, рентгеновского и гамма-излучения, которые регистрируют телескопы. Пульсары – это нейтронные звезды, то есть маленькие, но невероятно плотные и невероятно намагниченные объекты, образующиеся из остатков звезд с массой, в два-три раза превышающей массу нашего Солнца, после феерической вспышки сверхновой.

Знаменательно, что конференция проходит в Англии. Дело в том, что в 1967 году пульсары были открыты именно в Англии молодой ирландкой Джоселин Белл, магистрантом Кембриджского университета. Я смотрю на радиотелескоп. В лучах быстро заходящего солнца он приобрел красноватый оттенок и возвышается над нами, как гигантский психоделический гриб.

Бейлз знает, что я научный журналист, жаждущий новостей. Я всегда ищу интересные темы. Но теперь все не совсем так, как обычно. Бейлз хочет что-то рассказать, очень хочет, но почему-то не может. Произошло нечто очень важное, по-настоящему важное. В твиттере гуляют слухи, что зарегистрировано столкновение двух нейтронных звезд. Если это правда, значит, ученым удалось “захватить их с поличным” и, возможно, наблюдать нечто большее, чем просто пульсации нейтронных звезд. Новость еще не стала достоянием широкой публики и в ближайшие недели вряд ли станет. Но если слухи подтвердятся, это открытие, похоже, позволит ответить на многочисленные вопросы, относящиеся к этим загадочным объектам, о которых мы так мало знаем. Оно может помочь понять, например, происхождение коротких, но невероятно мощных гамма-всплесков и даже подтвердить общую теорию относительности Альберта Эйнштейна.

Однако, если новость известна пяти тысячам человек, сохранить секрет – большая проблема. Весь день одновременно с официальными докладами слышался приглушенный гул – ученые обсуждали предполагаемое открытие. Новость нависла над участниками конференции как грозовая туча, готовая пролиться в любой момент.

Этим вечером я несколько часов провела с Бейлзом в деревенском пабе в нескольких минутах езды от Джодрелл-Бэнк. В зале стоял запах пива и сырых дрожжей, который, казалось, тонким слоем покрывал стены. Разговор шел странный: Бейлз осторожно, не говоря ничего конкретно, намекал, что вот-вот станет известно нечто, что изменит историю астрофизики. Как и другие ученые, он не забывал о запрете LIGO[1] – обсерватории, которая руководила всеми детекторами, первыми зафиксировавшими это событие. А я старалась использовать все свои журналистские приемы, чтобы выведать больше. Однако мне пришлось довольствоваться большим количеством “возможно” про “вероятное”, но “не доказанное” событие. И все же, распрощавшись с Бейлзом, я сразу набрала номер Майка Мойера, редактора Quanta Magazine.

“Майк! Произошло что-то важное. Ты знаешь о гуляющих в твиттере слухах о возможном слиянии нейтронных звезд? Похоже, что это правда. Мы должны сразу заняться этой историей”.

На самом деле слияние нейтронных звезд – это катастрофическое столкновение в дальнем космосе двух невероятно плотных, массивных, но очень маленьких объектов. Открытие стало золотым дном для астрономов и позволило найти решения для большого числа космических загадок, и каждое такое решение можно считать большим научным успехом. Мы теперь знаем, откуда берется большинство тяжелых элементов. Но гораздо важнее появление многоканальной астрономии – нового подхода к наблюдению Вселенной – и возобновившийся интерес к классу таких примечательных объектов, как нейтронные звезды.


Моя цель – познакомить вас с этими удивительными и загадочными объектами, а также с людьми и местами, связанными с решением поражающих воображение загадок, которые они ставят перед нами. Только представьте себе сферу, диаметр которой всего двадцать километров, а масса – в пару-тройку раз больше массы нашего Солнца. Этот объект делает шестьсот оборотов в секунду, причем его вращение столь регулярно, что, возможно, в недалеком будущем нейтронные звезды будут играть роль галактической навигационной системы, направляющей людей к другим мирам. Более популярные черные дыры затмили нейтронные звезды. Пришло время вытащить их из пыльных сундуков астрофизики.

Чтобы написать эту книгу, я объехала весь мир, побывала в отдаленных местах, где радиотелескопы, большие и маленькие, слушают Вселенную. Вместе со мной вы увидите безлюдный марсианский ландшафт пустыни Атакама в Чили, побываете в джунглях Пуэрто-Рико. Мы окажемся в Карру – засушливом регионе Южно-Африканской Республики, заглянем в отдаленный уголок Австралии – страны кенгуру, ядовитых змей и белых какаду, прогуляемся по болотистой сельской местности в Нидерландах, по промокшей под дождем деревенской Англии, по полям вблизи города Пиза в Италии. В горах Западной Вирджинии вас ждет округ Покахонтас, а в Британской Колумбии – поразительная, утопающая в садах и виноградниках долина Оканаган.

Путешествие не ограничится обсерваториями: сквозь пространство и время вы отправитесь к окраинам нашей Галактики и дальше, в межгалактические просторы. Вы узнаете, что нейтронные звезды рождаются тогда, когда умирают звезды размером в несколько наших Солнц. Их смерть сопровождается невероятно мощным взрывом – вспышкой сверхновой. Вы поймете, к чему ведет космическая катастрофа – столкновение двух нейтронных звезд, при котором возбуждается такая мощная гравитационная волна, что ее можно зарегистрировать на Земле. Вы узнаете, где произошла самая яркая из когда-либо наблюдавшихся вспышек электромагнитного излучения. Такая вспышка по крайней мере на короткое время затмевает в гамма-лучах всю видимую с Земли часть Вселенной.

Благодаря работе замечательных ученых, с которыми вы встретитесь на страницах этой книги, вы узнаете, что быстро вращающиеся нейтронные звезды – пульсары – излучают радиоволны и как эти волны удается обнаружить. Вам станет известно, как ученые обнаруживают нейтронные звезды в центре остатков сверхновых или останков взорвавшихся сверхгигантов, которые в старые времена назывались “звезды-гости”. Вы познакомитесь с входящими в двойные

системы “миллисекундными пульсарами”, вращающимися со скоростью порядка тысячи оборотов в секунду, но при этом так сильно связанными со своими “компаньонами”, что эта система не разрушается. Вы узнаете о магнетарах, обладающих самым мощным магнитным полем в природе, и о радиопульсарах, у которых внезапно происходит сбой частоты вращения, или “глитч”, помогающий астрономам исследовать странные физические явления, происходящие внутри нейтронных звезд.

Наконец, вы узнаете о недавно открытых быстрых радиовсплесках, коротких импульсах, которые астрономы все еще пытаются объяснить. Вполне вероятно, что они генерируются нейтронными звездами. Множество радиотелескопов работает без остановки, чтобы узнать чуть больше об этих загадочных вспышках в далеком космосе. Но, даже когда ответ на этот вопрос будет получен, книгу о нейтронных звездах нельзя будет считать оконченной, ведь так много еще предстоит открыть в нашей Галактике и за ее пределами. Поэтому, выходя на улицу, неважно, в залитом огнями городе или в безлюдной пустыне, не забудьте посмотреть вверх. Невооруженным глазом нейтронных звезд вы не увидите, но будете знать, что они есть, что они вращаются где-то, посылая нам радиоволны и возмущая пространство-время. Жизнь – это гораздо больше, чем мы видим вокруг себя. И в этом ее красота.

 

Посмотрите вверх!

Глава 1
Столкновение, которое сотрясло космос

Это случилось утром 17 августа 2017 года. Всю ночь Марика Бранчези, итальянский астроном, доцент Научного института Гран-Сассо, провела в госпитале живописного городка-крепости Урбино в центре Италии. Она устала. Роды у ее младшей сестры Марилисы шли сложно и долго, и Марика хотела быть рядом. Наконец на свет появился здоровый мальчик, которого назвали Ной. Время дорого: Марика решила, что пора уходить. Новоиспеченная тетя поздравила и поцеловала на прощанье сестру, улыбнулась маленькому Ною и отправилась домой отдыхать.

Во время каникул Урбино выглядел абсолютно пустым. Отец Марики забрал ее у госпиталя и отвез домой, петляя по узким улочкам с домами из белого кирпича. Казалось, исходящий от них жар усиливает духоту. Наконец Марика с отцом подъехали к небольшому, окруженному тенистым садом дому, где жила ее семья. Это был день рождения ее мужа Яна. Ян только начал готовить обед, а их дети, двухлетний сын Диего и его восьмимесячный брат Дамиан, спокойно играли в саду.

Бранчези включила лэптоп. Она очень устала, но хотела еще кое-что сделать по работе. Будучи членом международного сообщества ученых, работающих с LIGO, лазерно-интерферометрической гравитационно-волновой обсерваторией, базирующейся в Соединенных Штатах, и детектором гравитационных волн Virgo в Италии близ Пизы, она знала, что всего три дня назад приборы зафиксировали сигнал от столкновения двух далеких черных дыр.

Такие открытия бывали и раньше: после последней модернизации детектор LIGO пять раз регистрировал подобные события. Астрономы впервые наблюдали слияние черных дыр 14 сентября 2015 года, всего через несколько дней после повторного включения LIGO. Теперь благодаря LIGO наконец появилась возможность непосредственно наблюдать гравитационные волны – рябь пространства-времени, обусловленную катастрофическими столкновениями невероятно плотных объектов в далеком космосе. Эта расходящаяся волнами рябь охватывает Землю наподобие волн от камня, брошенного на спокойную поверхность пруда. Наблюдение гравитационных волн подтвердило правоту Альберта Эйнштейна, предсказавшего почти сто лет назад, что гравитация может создавать волны, распространяющиеся по Вселенной со скоростью света. 3 октября 2017 года Кип Торн, Райнер Вайсс и Барри Бэриш, трое из четырех ученых, стоявших у истоков проекта LIGO, получили Нобелевскую премию по физике за то, что сделали возможной регистрацию гравитационных волн1. (Рональд Древер, еще одна ключевая фигура при разработке технологии LIGO, умер за полгода до того, как были объявлены лауреаты Нобелевской премии за 2017 год.)

Однако Бранчези была немного разочарована. Хотя слияние черных дыр – событие, безусловно, интересное, на самом деле она надеялась, что LIGO зарегистрирует нечто другое. Бранчези искала следы столкновения двух объектов, еще более таинственных, чем черные дыры, – небольших, сверхплотных, быстро вращающихся ядер массивных звезд, ядерное горючее которых уже выгорело – и они “сколлапсировали” под действием собственной гравитации. К сожалению, всего неделя отделяла LIGO от остановки на два года для проведения следующей запланированной модернизации, но до сих пор удалось обнаружить только слияние черных дыр. Это, конечно, немало, но для Бранчези недостаточно.

“Все готово, к столу!” – позвал Ян из сада. “Еда для мамочки!” – радостно повторил за ним Диего. Бранчези закрыла лэптоп и присоединилась к семейству. Покончив с салатом, она подхватила Дамиана и взяла за руку Диего, намереваясь уложить их спать. Измученная бессонной ночью, она надеялась, что и ей наконец удастся отдохнуть. Именно тогда звякнул ее телефон, оповещая о новом сообщении: ее просили присоединиться к телефонной конференции, срочно организованной коллегами по сообществу LIGO.

Никаких шансов отдохнуть в этот день у Бранчези уже не осталось. На самом деле ей не удалось выспаться и в ближайшие десять дней. От прочитанного у Бранчези перехватило дыхание. Только что два детектора LIGO одновременно с Virgo зарегистрировали именно то, чего она так ждала: сигнал недвусмысленно указывал на то, что на расстоянии около 130 миллионов световых лет от Земли столкнулись две нейтронные звезды. Хотя нейтронные звезды не такие плотные объекты, как черные дыры, их столкновение оказалось достаточно сильным, чтобы привести к высвобождению огромной энергии и запустить гравитационную рябь, разошедшуюся во все стороны по пространству-времени.

А теперь рябь наконец добралась до Земли2. Бранчези на мгновение закрыла глаза. Если бы LIGO не модифицировали два года назад, эти возмущения, невероятно ослабленные за время путешествия, занявшего 130 миллионов лет, дошли бы до Земли и прошли бы никем не замеченные. Ничего нового ученые не узнали бы. В этот раз благодаря Бранчези и еще небольшой группе астрофизиков, астрономов и физиков, изучающих гравитационные волны, они были готовы к этой столь маловероятной встрече.

Она посмотрела на сыновей. Диего уже слышал от своих родителей множество историй о черных дырах, скоро его мама добавит еще несколько о нейтронных звездах. Бранчези знала, что если это наблюдение подтвердится, то слияние, теперь известное как GW170817, вполне может стать определяющим моментом в ее карьере, кульминацией ее десятилетних усилий по объединению исследователей из самых разных областей для совместной работы.

Любые приходящие из космоса сигналы могут быть “посланниками”. Например, от нашего Солнца исходит не только свет, но и непрекращающийся поток почти безмассовых частиц, так называемых нейтрино3. С помощью многоканальной астрономии удалось подтвердить всего три события, произошедшие за пределами нашего Млечного Пути. В 1987 году с использованием оптических телескопов и при участии нейтринных обсерваторий была обнаружена сверхновая. В 2018 году оптическим телескопам и детектору нейтрино IceCube в Антарктике удалось идентифицировать источник космических нейтрино4. Им оказался блазар – объект высокой светимости, связанный со сверхмассивной черной дырой в центре галактики, расположенной в четырех миллиардах световых лет от нас. Однако переломным моментом стало обнаружение и наблюдение в 2017 году гравитационно-волнового всплеска GW170817. Это и был проект, на который столько сил положила Бранчези. В этот раз физики зафиксировали проходящие через Землю пульсации пространства-времени и немедленно оповестили астрономов. Астрономы направили к источнику этих слабых пульсаций свои оптические, радио- и все другие возможные телескопы, предназначенные для приема электромагнитного излучения различных длин волн, чтобы зафиксировать весь спектр сигналов, иначе говоря, посланников космического катаклизма.

Очень важно, что это историческое столкновение и находящаяся в стадии становления многоканальная астрономия помогли ученым получить представление об устройстве и эволюции этих удивительно странных объектов нашей Вселенной – нейтронных звезд5.

Благодаря своей работе Бранчези уже в следующем году попала в список самых влиятельных людей 2018 года по версии журнала Time6.

Но даже до получения результатов, уже в Урбино, стоя в своем нагретом летним солнцем саду днем 17 августа 2017 года, она знала: это событие навсегда останется в науке будущего и в исторических книгах.

За одиннадцать миллиардов лет до открытия

Посмотрите как-нибудь ночью на полную Луну. Затем представьте себе, что вы поставили на ней ручкой точку, диаметр которой составляет менее 1 % от диаметра Луны. Поскольку поперечный размер Луны примерно 3476 километров, диаметр нарисованной точки будет около 20 километров. Это чуть меньше диаметра Чикаго, если представить себе, что этот город свернулся в плывущий в космосе шар. Средний размер нейтронной звезды именно такой.

Нейтронная звезда – это то, что осталось от звезды, масса которой изначально составляла от восьми до пятнадцати[2] масс Солнца. За миллионы лет ядерное топливо выгорает, и массивная материнская звезда постепенно умирает. Этот процесс заканчивается феерическим взрывом – вспышкой сверхновой. Можно ожидать, что в среднем в галактике размером с наш Млечный Путь гибель звезды происходит примерно раз в пятьдесят лет. В огромной пустой Вселенной нейтронная звезда могла бы показаться совсем незначительным объектом, если бы не ее невероятная плотность, превышающая плотность воды примерно в сто триллионов раз. В плотном объекте внутри очень малого объема зажато очень большое количество вещества. Нейтронная звезда – это самый плотный из известных нам объектов, состоящих из обычного вещества. Если к массивной нейтронной звезде добавить еще немного вещества или если две нейтронные звезды столкнутся, коллапс звезды продолжится, что приведет к образованию черной дыры. Диаметр нашего Солнца – порядка 1,4 миллиона километров, но его масса примерно равна массе крохотной нейтронной звезды, поперечный размер которой составляет всего 20 километров. Представьте себе вишенку на торте, которая весит миллиард тонн!7

При такой безумной плотности эти таинственные зомби-звезды еще и носятся в пространстве, быстро вращаясь вокруг своей оси со скоростью как минимум один оборот в секунду. У некоторых нейтронных звезд вблизи магнитных полюсов формируются узконаправленные потоки электромагнитного излучения – джеты. Поскольку нейтронные звезды вращаются, их излучение в виде всплесков радиоволн можно обнаружить, когда один из джетов направлен в сторону Земли. Можно сказать, что быстро вращающаяся нейтронная звезда чем-то напоминает непрерывно светящий вращающийся маяк, тогда как кораблям в море, или в нашем случае астрономам, видны только отдельные вспышки. Такие нейтронные звезды называют пульсарами, и обычно видят именно их. Вспышки многих пульсаров столь регулярны, что недавно пульсары предложили использовать для независимой проверки атомных часов, определяющих международное атомное время8.

Астрономы считают, что, хотя пока удалось открыть около трех тысяч радиопульсаров, только в нашей Галактике их число может достигать ста миллионов9. И все же до сих пор мы знаем о них очень мало.

Правда, до того, как 17 августа 2017 года в 14 часов 41 минуту по местному времени Марика Бранчези в городе Урбино получила сообщение о слиянии нейтронных звезд в соседней галактике, мы знали о радиопульсарах еще меньше10. Наконец у человечества появился шанс лучше понять, что представляют собой эти странные объекты.

По-видимому, две нейтронные звезды, замеченные LIGO и Virgo, образовались около 11 миллиардов лет назад. Тогда Вселенная была еще молодой, ни Земли, ни Солнечной системы не существовало, а обычные звезды объединялись в скопления. Две звезды, каждая из которых была примерно в десять раз массивнее Солнца, умерли одна за другой. По космическим масштабам они находились не слишком далеко друг от друга, и их оставшиеся ядра массой чуть больше одной солнечной массы (массы Солнца) начали по спирали приближаться друг к другу под действием взаимного гравитационного притяжения. Этот танец предопределил их судьбу. Обращаясь вокруг общего центра масс, они сминали ткань пространства и времени, наподобие того, как оставляет вмятины шар для боулинга, катясь по натянутой простыне, которую держат за четыре угла. Деформация пространства-времени, вызванная нейтронными звездами, привела к появлению ряби – гравитационных волн, распространяющихся по Вселенной11.

За сто тридцать миллионов лет до открытия

Пока две нейтронные звезды двигались по спирали друг к другу, Вселенная эволюционировала и расширялась, образовывались новые галактики и рождались новые звезды. Около 130 миллионов лет назад эти нейтронные звезды подошли настолько близко друг к другу, что каждая из них стала причиной появления приливов и отливов на поверхности другой, вроде тех, за которые в земных океанах ответственна Луна. Эти приливные эффекты, растягивая и сжимая звезды, разрушали их.

Несколько позже произошла космическая катастрофа: нейтронные звезды наконец столкнулись и взорвались. Часть выброшенного при взрыве вещества не потеряла связь с тем, что сохранилось от этой пары, и из “мусора” вокруг остатка сверхновой образовался так называемый аккреционный диск. Это, в свою очередь, привело к формированию из вещества аккреционного диска мощной струи – джета, распространяющегося по Вселенной со скоростью, близкой к скорости света, и излучающего в рентгеновском, оптическом и радиодиапазонах. Кроме того, джет стал источником короткой и невероятно сильной вспышки гамма-излучения – наиболее мощного из известных электромагнитных событий.

 

Какой-то части выброшенной массы удалось преодолеть силу притяжения остатка сверхновой, сформировав очень горячее и быстро расширяющееся облако, напоминающее увеличивающийся в размере пончик. Это облако было настолько богато нейтронами, что запустилась реакция образования элементов тяжелее железа, таких как золото, серебро и платина. По оценкам астрономов, масса тяжелых элементов в этом облаке составляла примерно десять тысяч масс Земли. Только чистого золота там было 236 секстиллионов (то есть 236 и хвост из двадцати одного нуля) тонн, что равно сорока массам Земли. Радиоактивный распад всех этих тяжелых элементов генерирует свет – оптическое излучение, обусловленное радиоактивным послесвечением, которое называют “килоновая”12.

При слиянии двух нейтронных звезд плотность новообразованного тела резко увеличивается. Вероятнее всего, такая объединенная нейтронная звезда становится слишком массивной, чтобы продолжать существовать, она коллапсирует внутрь себя и образует черную дыру. Очень важно, что слияние значительно усиливает гравитационную рябь, которая была до столкновения. Гравитационные волны становятся невидимыми посланниками великого и ужасного соударения, и они, обладая энергией двухсот миллионов Солнц, со скоростью света разбегаются во всех направлениях.

Когда это все происходило, на Земле начинался меловой период и динозавры населяли материки и океаны. Только в августе 2017 года гравитационная рябь достигла нашего мира и прикоснулась к чувствительной аппаратуре LIGO и Virgo. В течение этих 130 миллионов лет гравитационные волны, двигающиеся, согласно предсказанию Эйнштейна, со скоростью света, то есть около 300 тысяч километров в секунду, стали существенно слабее. До нас дошли и другие сигналы этого космического события, а именно – свет и радиоволны, распространяющиеся с той же скоростью. Когда мы что-то видим в космосе, мы наблюдаем прошлое. Даже свету, идущему от Солнца, требуется восемь минут двадцать секунд, чтобы дойти до нас. Если Солнце внезапно исчезнет (хотя этого не должно случиться при нашей жизни), потребуются именно эти восемь минут, чтобы мы узнали о произошедшем событии.

Когда детекторы LIGO и Virgo зафиксировали гравитационную волну, они разослали автоматические уведомления. Эти уведомления получили несколько так называемых первых респондентов, работа которых состояла в оценке всех возможных кандидатов, отмеченных программой. Стало ясно, что получены сенсационные данные: сила сигнала указывала на два объекта, массы которых попадали в интервал, соответствующий массам нейтронных звезд – другими словами, меньше масс черных дыр. Теоретически это означало, что столкновение должно также сопровождаться электромагнитным излучением. И действительно, ровно через две минуты после регистрации LIGO и Virgo сигналов гравитационных волн космический гамма-телескоп Fermi зафиксировал интенсивную вспышку гамма-излучения. За несколько минут удалось оповестить более широкий круг участников сообщества LIGO/Virgo, включая Бранчези, что стало началом очень долгой исторической телеконференции.

За сто лет до открытия

Помните рассказ об Исааке Ньютоне, которого ударило по голове яблоко – и тогда он внезапно догадался, как действует сила тяготения? Считается, что озарение снизошло на Ньютона именно так, но это не совсем точно, хотя он действительно наблюдал, как в саду его усадьбы Вулсторп в графстве Линкольншир с дерева падают яблоки. Возможно, и три с лишним века спустя эта яблоня все еще растет в том же саду. Ньютона занимал вопрос: почему яблоки всегда падают на землю? Раздумывая на эту тему, он построил теорию всемирного тяготения. Эта работа опубликована в 1687 году. В соответствии с теорией Ньютона, сила тяготения – это сила, действующая на все материальные тела во Вселенной и зависящая как от массы, так и от расстояния. Согласно Ньютону, все без исключения частицы вещества притягиваются друг к другу с силой, прямо пропорциональной произведению их масс и обратно пропорциональной квадрату расстояния между ними13. Закон всемирного тяготения Ньютона в неизменном виде господствовал до тех пор, пока не появился Эйнштейн.

Для Эйнштейна – служащего швейцарского патентного бюро, который занимался физикой в свободное время, – сила притяжения вообще силой не была. Он утверждал, что на самом деле это искривление пространства и времени, или пространства-времени, включающего в себя четыре связанные между собой размерности: три пространственные (вверх-вниз, вправо-влево, вперед-назад) плюс еще одна – время. Согласно общей теории относительности, опубликованной наиболее полно в 1916 году, то, что мы воспринимаем как силу тяготения, на самом деле есть следствие кривизны пространства-времени. Массивные объекты, такие как звезды и планеты, изгибают и скручивают его ткань, создавая горы и впадины, хребты и плоскогорья, заставляющие близлежащие объекты двигаться в пространстве-времени зигзагообразно, поднимаясь и опускаясь.

Хотя кажется, что Солнце, притягивая к себе Землю, заставляет нашу планету обращаться вокруг него, это просто означает, что движение Земли определяется искривлением пространства-времени вокруг гораздо более массивного Солнца.

Кроме того, Эйнштейн математически показал, что любая не идеально сферически симметричная ускоряющаяся масса искривляет пространство-время и служит источником гравитационных волн, распространяющихся по Вселенной со скоростью света. Гравитационные волны возникают, даже если просто помахать рукой, но в этом случае они слишком малы и их нельзя заметить. Чтобы деформация пространства-времени была измеримой, требуется невероятно большое количество энергии. Такое, как при катастрофических космических событиях, в которых принимают участие столь массивные объекты, как черные дыры и нейтронные звезды, обращающиеся друг относительно друга, а затем сталкивающиеся на скорости, равной одной трети скорости света. Согласно Эйнштейну, подобное столкновение приводит к возбуждению гравитационных волн большой энергии, которые, распространяясь, “омывают” планеты, звезды и все, что встретят на своем пути. Они несут с собой информацию об источнике, вызвавшем их появление, и, возможно, даже о природе гравитации. В своих более поздних работах Эйнштейн несколько раз возвращался к этой ряби на пространстве-времени, но десятки лет гравитационные волны существовали только теоретически14.

В 1974 году астрономы Рассел Алан Халс и Джозеф Хотон Тейлор – младший из Массачусетского университета в Амхерсте косвенным образом доказали существование гравитационных волн. Они заметили, что в системе двух гравитационно связанных нейтронных звезд орбитальный период, то есть время, которое требуется звездам, чтобы совершить оборот вокруг общего центра масс, постепенно уменьшается. Два тела постепенно сближаются, двигаясь навстречу неизбежному столкновению, поскольку, по мысли Халса и Тейлора, система теряет энергию в форме гравитационных волн. Сейчас такую систему называют пульсаром Халса – Тейлора. В 1993 году эти ученые получили за свою работу Нобелевскую премию15.

Однако прямым свидетельством существования гравитационных волн результаты Халса и Тейлора не были. Требовалось экспериментальное подтверждение, а для этого ученым необходимо было новое, необычайно точное оборудование. Результат: два работающих вместе детектора-близнеца LIGO – один в Хэнфорде, штат Вашингтон, другой в Ливингстоне, штат Луизиана. Каждый из детекторов использует интерференцию двух лучей лазера, что позволяет невероятно точно измерять расстояния. Обсерватория, которая эксплуатируется Массачусетским и Калифорнийским технологическими институтами, находится в ведении научного сообщества LIGO – группы, состоящей из тысячи ученых из университетов шестнадцати разных стран. В восьмидесятых годах об идее создания LIGO впервые заговорили Райнер Вайсс, Кип Торн и Барри Бэриш, но поскольку требовалось преодолеть бюрократические барьеры и добиться значительного финансирования, которое необходимо для реализации больших научных проектов, до начала строительства прошло еще десять лет. Наконец в 2002 году LIGO приступила к работе16.

А еще через пять лет, в 2007 году, к ним присоединился третий детектор – Virgo. Он расположен вблизи итальянского города Пиза и финансируется Европейским Союзом17. Поскольку ученым потребовалась помощь Virgo для определения точного местоположения первого наблюдавшегося слияния нейтронных звезд, я решила отправиться туда. Мной руководило стремление ближе познакомиться с удивительной аппаратурой этого детектора. Ее появление – результат изобретательности человека, который стремится узнать больше о самых захватывающих тайнах космоса и медленно, но неуклонно, шаг за шагом, продвигается вперед.

1Laser Interferometer Gravitational-Wave Observatory, “лазерно-интерферометрическая гравитационно-волновая обсерватория”. – Здесь и далее, если не указано иное, прим, перев.
2Верхняя граница массы предков нейтронных звезд пока известна плохо. Она может достигать и шестидесяти масс Солнца. – Прим. науч. ред.
Купите 3 книги одновременно и выберите четвёртую в подарок!

Чтобы воспользоваться акцией, добавьте нужные книги в корзину. Сделать это можно на странице каждой книги, либо в общем списке:

  1. Нажмите на многоточие
    рядом с книгой
  2. Выберите пункт
    «Добавить в корзину»