Парадокс Вигнера

Текст
Читать фрагмент
Отметить прочитанной
Как читать книгу после покупки
Шрифт:Меньше АаБольше Аа

– Анатолий Петрович, я прошу меня извинить, – вмешался Илья Кузьмич, – это всё интересно, но я жду от Вас научных доказательств существования параллельных миров и цели Вашего исследования коматозного пациента, если Вы докажите безопасность его проведения!

– Хорошо, я углублюсь сейчас в науку! – согласился Куликов, но если Вам будет непонятно, о чем я говорю, подскажите мне об этом!

Как родилась квантовая механика? Дело в том, что в 1900-м году во время одного из экспериментов Макс Планк обнаружил странное поведение излучения, полностью противоречащее законам классической электродинамики. Этот эксперимент повторяли многие учёные, чтобы лично убедиться в открытой парадоксальности его результатов. Эксперимент проводился с двумя щелями, и его цель заключалась в изучении, как ведут себя частицы и волны, проходя через одну и две щели, сделанные в преграде на их пути от источника к экрану. Представьте себе, что мы шариками (частицами) из специального устройства (источника) обстреливаем экран, на котором остаются следы их столкновения с ним. Между стреляющим устройством и экраном установлена преграда – металлический щит с одной или двумя щелями в виде вертикальных прорезей.

Рассмотрим сначала опыт, если щель будет одна. Попадая в щит, шарики отскакивают, а угодившие в прорезь, летят дальше к экрану и, сталкиваясь с ним, оставляют следы. После длительного обстрела огромным количеством шариков, мы получим на экране вертикальную полосу, состоящие из следов столкновений шариков с экраном. В случае двух щелей-прорезей – на экране остаются две вертикальных полосы. А теперь погружаем экран, преграду со щелями наполовину в воду, а источник будет выбрасывать не шарики, а гнать волну на поверхности воды. Экран будет отражать наибольшую силу столкновения с ним волны.

В случае одной прорези, на экране появиться яркая вертикальная полоса, как в случае с шариками. А если мы добавим ещё одну щель в преграде? Казалось бы, получим две полосы, как с шариками. Но нет! На экране мы увидим множество вертикальных полос. Причём, самой яркой будет полоса в центре экрана, соответствующая максимальной силе волны. Что же произошло в данном случае? Проходя через две щели, волна от источника разделяется на две. Одна – за счёт прохождения первой щели, другая – второй. А дальше на пути от преграды до экрана волны начинают гасить друг друга и, достигая его, оставляют на нем следы. Самая яркая полоса будет в центре экрана, а от него вправо и влево яркость полос снижается.

С волнами произошла так называемая интерференция, и это уже было известно в классической физике. А теперь давайте посмотрим, как ведут себя фотоны, маленькие частицы света. Если мы пропустим их через одну щель, то на экране видим вертикальную полосу, как и в случае с шариками. Но если мы пропустим фотоны через две щели, то вместо двух полосок, мы увидим их множество, как в случае с волнами. То есть на экране будет интерференционный узор. Это невозможно, ведь фотоны представляют собой частицы! Парадокс подвиг учёных Нильса Бора и Гейзенберга в 1927 году в Копенгагене сформулировать вывод о том, что свет обладает корпускулярно-волновым дуализмом. То есть свет или оптический луч представляет собой одновременно и поток частиц и волну излучения, что противоречило законам классической физики и послужило рождению науки – квантовой механики! Позднее учёные выяснили, что подобно фотонам так ведут себя электроны, протоны и различные атомы. Эту формулировку назвали Копенгагенской интерпретацией.

Квантовой механикой занялись многие учёные, а она не переставала удивлять их и даже обескураживать своими парадоксами. Появились предположения, что опыт с двумя щелями даёт парадоксальный результат от того, что фотоны, проскакивая в прорези преграды по пути к экрану, сталкиваются между собой и разлетаются. Достигая экрана с различными скоростями, ударяются об него с неодинаковой силой, вызывая появление интерференционного узора. Решили «выстреливать» по одной микрочастице друг за другом, исключив тем самым их столкновение и взаимодействие, но результат оставался неизменным. Получалось, что частица разделялась надвое, проходила обе щели и, столкнувшись сама с собой на пути к экрану, оставляла на нем множество полос.

Так возникла необходимость наблюдения за электроном, чтобы определить через какую щель частица проходит на самом деле? Решили «подсмотреть», как он ведёт себя, пролетая сквозь щель? Поставили около одной щели измерительный прибор и выпустили электрон, но в квантовой механике больше мистики, чем учёные могли предположить. Когда стали наблюдать, частицы снова начали вести себя, как маленькие шарики, и произвели на экране изображение двух полосок, а не интерференционный узор. Результат наблюдения показал, что электрон проходит одну прорезь, а не две. Частица как будто знала, что за ней следят и «от стыда спрятала от наблюдателя волновые качества». Этого не могло произойти даже по законам новой науки, но неоднократно проведённые исследования неоспоримо доказали этот факт. Так открыли коллапс волновой функции микрочастиц.

Позднее учёные объяснили этот коллапс следующим образом. Для того, чтобы измерить электрон, то есть провести за ним наблюдение, его нужно ударить о квант измерительного прибора. Именно из-за этого удара волновые функции электрона исчезают и он становиться только частицей. Таким образом, сам наблюдатель не влияет на частицу, и коллапс волновой функции электрона вызывают кванты измерительного прибора. Но факт внесения изменений в квантовую систему был сам по себе парадоксален и впоследствии учитывался учёными при исследованиях, потому что вызывал изменение исходных суперпозиций.

Развиваясь, квантовая механика вошла в противоречие не только с классическими науками, но и с известной теорией относительности Эйнштейна, согласно которой ничто не может двигаться во Вселенной быстрее скорости света. Кроме того эта теория тоже имеет парадокс: чем быстрее движется объект, тем больше замедляется его время. Достигая скорости света, оно вообще останавливается. Проще говоря, если бы мы полетели на космическом корабле, способном развивать скорость света в другую галактику, находящуюся на расстоянии в триста миллиардов световых лет, то мы бы туда долетели за одно мгновение. Потому что для космического корабля время бы остановилось, а на Земле прошло три миллиарда лет. Почему скорость замедляет время, которое взаимосвязано с пространством для нашей Вселенной? Это невозможно в реальном мире.

В чем противоречие законов квантовой механики теории Эйнштейна? В превышении скорости света! Одним из доказательств является мгновенное изменение спина второго фотона из квантово-запутанных пар, в случае если мы измеряем спин первого и наоборот. Спин – это направление вращения микрочастицы вокруг своей оси, и если одна из пары вращается по часовой стрелке, то вторая по закону сохранения импульса, должна иметь противоположное вращение. Другого варианта просто не бывает! Так, если разнести фотоны квантово-запутанных пар на бесконечное расстояние друг от друга, скажем в разные концы Вселенной, и измерить спин первого фотона, то второй поменяет свой спин на противоположный мгновенно. Скорость получения информации вторым фотоном об изменении спина первого превысит скорость света в сотни тысяч раз!

Ирландский физик Джон Белл додумался до невероятно хитроумного эксперимента и смог доказать это. Научная общественность мира была ошеломлена результатами его эксперимента. В квантовой механике появилось ещё больше загадок. В 2008 году группа швейцарских исследователей из Женевского университета смогла измерить кратность превышения скорости света фотонами с квантовой запутанностью, когда они «узнают» об изменении спина своей пары. Имея специальную технологию, им удалось это сделать, информация об изменении спина одного из пары доходит до другого в сто тысяч раз быстрее скорости света….

– Профессор, Вы уж слишком углубились в науку, – прервал Куликова Протасов, – давайте о параллельных мирах!

– Хорошо, доктор, как прикажите! – согласился Куликов, – в 1954 году теорию о существовании параллельных миров выдвинул Эверетт. Он счёл, что если во Вселенной одновременно действуют разные законы – классической физики и квантовой механики, то почему не могут одновременно сосуществовать разные Вселенные? Так родилась многомировая интерпретация, ее суть заключается в том, что при каждом акте измерения квантового объекта, наблюдатель как бы расщепляет мир на несколько версий. Каждая из них видит свой результат измерения и действует в соответствии с ним в своей вселенной.

Согласно теории Эверетта, таких вселенных бесчисленное множество! Но все они не связаны с той, в которой мы живём, и параллельны ей, а значит, никогда могут пересекаться. Вероятно, в тех вселенных тоже происходили свои войны, носившие, возможно, несколько иной характер, чем те, что были в нашей истории. А те виды живых организмов, погибших в нашей Вселенной, могли эволюционировать и приспособиться к условиям в другом мире. Но как можно объяснить, появление из параллельного мира животных, несуществующих у нас, которых видят пьяницы во время белой горячки? Также известны случаи появления «наших» животных в тех широтах, где они по определению не могли обитать.

Когда я готовил докторскую диссертацию, то пользовался Полным собранием русских летописей и нашёл там удивительную запись: «В лето 7090. Поставиша город Земляной в Новгороде. Того же лета изыдоша коркодили лютые звери из реки и путь затвориша, людей много поядоша, и ужасошася людие и молиша Бога по всей земле; и паки спряташася, а иных избиша. Того же году преставися княжич Иван Иванович в Слободе, декабря в 14 день». Переводится это со старославянского языка примерно так: «7090 год. г. Земляной близь Новгорода. В этом году крокодилы, лютые звери вылезали из реки и съели многих людей, которые в ужасе молились Богу и прятались в избах. В то же году умер княжич Иван Иванович в Слободе 14 декабря».

Что это за «коркодили» вышли из реки и напали на людей? Ведь дело происходило под Новгородом. Может, летописец преувеличил для красного словца? Но вот ещё одна запись другого времени. Она сделана агентом Английской торговой компании Джеромом Гарсеем. В 1589 году он в очередной раз ехал на Русь и в Польше стал свидетелем невероятного случая. Он пишет: «Я выехал из Варшавы, переправившись через какую-то реку на ручном пароме, и увидел на берегу мёртвого крокодила, которому мои люди разорвали брюхо копьями. При этом распространилось такое зловоние, что я был им отравлен и пролежал больной в ближайшей деревне, где встретил такое сочувствие и христианскую помощь, что чудесно поправился…».

 

Нечто напоминающее крокодилов встречается и в воспоминаниях австрийского посла Сигизмунда Герберштейна, приезжавшего в Москву в 1517 и 1526 годах. Вот слова из его «Записок о московских делах»: «Эта область изобилует лесами, в которых можно наблюдать страшные явления. Именно там и поныне очень много идолопоклонников, которые держат у себя дома каких-то змей с четырьмя короткими ногами, наподобие ящериц, с жирным телом… с каким-то страхом благоговейно поклоняются им, выползающим к поставленной пище».

Три исторических источника, повествующих об очень похожих феноменах. Разве это не заслуживает внимания? Конечно, можно и отмахнуться от этих свидетельских показаний, так как они явно не вписываются в привычную для нас картину мира. Именно так отнеслись однажды учёные к рассказам голландского лётчика, потерпевшего аварию на одном из островов в Яванском море. Это было в 1912 году. Вернувшись на родину, он стал рассказывать невероятные истории о каких-то кровожадных драконах, обитающих в тех местах. Лишь в 1926 году на остров Комодо всё же прибыла экспедиция зоологов и действительно обнаружила там реликтовых ящеров, названных комодскими драконами. Эти доисторические животные численностью около тысячи, достигают длины 3,5 м и весят 130–150 кг. Гигантские вараны достаточно агрессивны, иногда таскают овец у местных крестьян…

Может, нечто подобное водилось когда-то и на Руси? Хочется верить, что однажды криптозоологи заинтересуются легендами о «русских крокодилах». Ведь уже не раз, проверяя подобные слухи, они убеждались, что народные предания не возникают на голом месте… «Неведомый крокодил», прозванный на этот раз арзамасским монстром, вновь объявился в России в начале XVIII века. Свидетельство об этом странном событии было обнаружено в архиве города Арзамаса. Вот краткая выдержка из документа:

«Лета 1719 июня 4 дня. Была в уезде буря великая, и смерч, и град, и многие скоты и всякая живность погибли…. И упал с неба змий, Божьим гневом опалённый, и смердел отвратно. И, помня Указ Божьей милостью Государя нашего Всероссийского Петра Алексеевича от лета 1718 о Кунсткамере и сбору для ея диковин разных, монструзов и уродов всяких, каменьев небесных и разных чудес, змия сего бросили в бочку с крепким двойным вином…».

Подписана бумага земским комиссаром Василием Штыковым. К сожалению, «посылка», очевидно, не дошла до петербургского музея. Природа арзамасского монстра осталась неразгаданной. Может, смерч занёс из далёких стран настоящего крокодила? Ведь, согласно описанию, монстр, упавший с неба, имел четыре короткие лапы и огромную пасть с острыми зубами. Или где-то в тогда ещё густых российских лесах оставались таинственные звери, упоминавшиеся в новгородской хронике? А может, живы они где-нибудь и поныне? Ведь до сих пор в народе ходят рассказы о загадочных существах, обитающих в некоторых российских озёрах. Но у меня сомнений нет, это гости из параллельных миров, «прорвавшиеся» через случайный портал….

В 1931 году американский исследователь Чарльз Форт ввёл термин «места телепортации». Это участки пространства, где возможны внезапные перемещения и там открываются двери в параллельные миры. Согласно различным версиям, именно оттуда наведываются НЛО, полтергейст, привидения, черти, и прочая нечисть. Но раз двери открываются в одну сторону, то не исключено, что можно пройти и в другую? Сторонники Чарльза Форта уверены: пропавших без вести людей, счёт которым идёт на тысячи, стоит искать в параллельных мирах. Но никто не знает, как туда попасть и вернуться обратно.

Пришло время сказать о моей модели параллельных миров. В отличие от Эверетта я не только не допускаю их параллельности в смысле ориентации в пространстве и невозможности пересечения, а наоборот – каждый из них имеет общую линию с тем, который возникает после акта измерения квантового объекта. Миры расщепляются и образуют каждый свою ветвь, которая также подвергается этому в дальнейшем. Мы получаем разветвлённую сеть параллельных миров, имеющих общие линии пересечения в местах расщепления. Этот процесс происходит по закону геометрической прогрессии с коэффициентом 2, так как вероятность любого события до момента расщепления равна 50%, или оно произойдёт или нет. Таких миров бесчисленное множество и есть возможность попасть из одного в другой на линии их пересечения после расщепления.

– А почему Вы говорите о пересекающихся плоскостях? – поинтересовался Протасов, – мы живём в трёхмерном пространстве, где все измеряется по длине, ширине и высоте, и способны мыслить в его рамках. Мы знаем, что одно измерение – это бесконечная прямая, легко можем представить два – плоскость, и видим всё вокруг в трёхмерном измерении. Если бы миры были плоскостями, то есть двумерными, то окружающий нас мир, представлялся бы нам в виде отрезков прямой линии. В таком случае вряд ли можно было отличать, здания от деревьев, автомобили от людей, да и их друг от друга. Вы, маленький отрезок прямой пришли ко мне, такому же кусочку линии и неизвестно, как узнали, что я – это я?

– Относительно зрения ошибаетесь мой друг, – возразил Куликов, – хотя мы живём в трёхмерном пространстве, наше зрение двумерно! Мы видим проекцию трёхмерного пространства на сетчатку нашего глаза. Посмотрите, Вы же не видите, что находится у Вас за спиной? Если бы зрение было трёхмерным, то это можно увидеть, аналогично тому, как Вы смотрели на Юлию в сестринской комнате, будто из коридора. Я не знаю почему, но появление ведьмы способствовало кратковременному возникновению у Вас трёхмерного зрения.

Мы можем представить, что границей пересечения двух плоскостей является прямая линия, но в случае трёхмерного пространства она будет выглядеть сложной ломанной, потому что в этом случае пересекаются кубы. Если проекцией плоскости является прямая линия, то куб будет проецироваться как квадрат. Это позволяет сделать вывод, что проекцией пространства, имеющего четыре измерения, будет именно куб. А как представить в своём воображении четырёхмерное пространство? Изменением Сознания человека!

Обыкновенный, то есть неподготовленный человек, такой, например, как мы с вами, не может даже вообразить себе четырёхмерное пространство, я не говорю уже о большем количестве измерений. Его Сознание, как «цензор» не позволит этого. Логически напрашивается вывод, нужно «дать сигнал цензору», чтобы он, как в случае с «перевёрнутым миром», понял, чего необходимо мозгу в этом случае. Выражение «дать сигнал цензору» подразумевает либо медитацию по специальной технике, либо через мой «квантовый компьютер» воздействовать на область головного мозга, отвечающего за контакт с Сознанием….

– Я не понял, Анатолий Петрович, – вклинился Протасов, – Вы говорите так, как будто Сознание человека находится не в головном мозге, а поступает в него виде информации.

– Не совсем информации, в том понимании, к которому мы привыкли, – отвечал Куликов, – разработанная мною квантовая модель Сознания человека даёт ответ на Ваш вопрос. Информация, о которой Вы говорите, поступает сначала в Сознание человека, которое исходя из её содержания, даёт команду мозгу, как инструменту своей работы, воспринимать её в том виде или нет. Но вернёмся к многомерности пространства.

Если бы мы обладали трёхмерным зрением, мир для нас бы выглядел совсем по-другому. А как представить себе четырёхмерное пространство? Я попытаюсь сейчас объяснить это на примере. Я уже говорил, что проекцией куба на плоскость будет квадрат, а он сам является проекцией фигуры четырёхмерного пространства. А как в нём будет выглядеть куб? Я постараюсь построить эту фигуру на листе бумаги, обратным способом.

Куликов достал из своего портфеля несколько листов бумаги и фломастер. Протасов с интересом наблюдал за его действиями. Профессор поставил жирную точку на одном из листов.

– Так выглядит куб в нульмерном пространстве, – пояснил он, – то есть в таком, у которого нет ни одной пространственной координаты. Все фигуры проецируется в него точкой! Обратным способом будем строить наш нульмерный куб в одномерное пространство, то есть в такое, где существует лишь одна координата. Для этого скопируем точку рядом с имеющейся и соединим их прямой линией. Так выглядит наш куб в одномерном пространстве. Теперь строим проекцию куба в двухмерном пространстве. Для этого проделаем то же – спроецируем отрезок выше имеющегося и соединим концы прямыми линиями. Получаем квадрат, то есть проекцию нашего куба на плоскость двумерного пространства.

Легко представить, как из этой фигуры обратным способом получить трёхмерный куб. Копируем квадрат и размещаем его чуть выше имеющегося и немного вправо. Вершины обеих квадратов соединяем отрезками прямой линии и получаем трёхмерный куб. А теперь по тому же алгоритму строим четырёхмерный куб. Копируем и, разместив рядом, чуть выше и вправо, соединяем вершины. Так выглядит куб в четырёхмерном пространстве. Построить его легко, но представить в своём воображении не так просто.

Куликов протянул лист бумаги Илье Кузьмичу и тот, взглянув на полученную фигуру, поморщился.

– Действительно сложно, – согласился он, – необходимо иметь неординарное воображение!

– Это от того, что мы не знаем, где проходит четвёртая координата пространства, – подытожил профессор, – но зато теперь представляем, как бы выглядели более сложные фигуры в четырёхмерном пространстве. Мы с Вами, например. Наверное, все вместе страшные уроды из фильмов ужаса, были бы красивее нас в тысячу раз! Готово ли наше Сознание воспринимать четырёхмерное пространство? Вряд ли! Оно, как цензор, не позволяет видеть нам другие координаты, кроме известных каждому из нас – ширину, длину и высоту!

В современной физике популярна так называемая «теория струн». Для понимания она чрезвычайно сложна. Но главное – в ней допускается существование других измерений! Их количество может доходить до 26, однако эти дополнительные размерности как бы свёрнуты нашим Сознанием, потому мы их и не видим. Экспериментально их обнаружить, тоже пока не удалось. Но главное не в том.

Данная теория позволяет представить элементарные частицы, составляющие атом из ультрамикроскопических волокон, называемых струнами. Все свойства элементарных частиц объясняются их резонансным колебанием. Эти волокна могут совершать бесконечное множество вариантов вибраций. Согласно этой теории, Вселенная была создана благодаря расширению микропространства, от длины, соизмеримой с постоянной Планка до величины суперструн, соответствующих размерам Мультивселенной. Её струны точно так же взаимодействуют между собой и производят те же вибрации, колебания и порождают гравитационное излучение.

Если дополнительные координаты многомерных пространств существуют, то где они проходят? Скорее всего, в тех местах, которые мы привыкли называть линиями пересечения параллельных миров. Вообразить себе, что это такое, можно с помощью простой аналогии. Представьте, что вы живете в плоскости, то есть в двух измерениях, и вам неизвестно, что эта плоскость пересекается с бесконечным числом других, где есть участки, через которые ваша двухмерная фигура может случайно проникнуть в «чужую» для вас плоскость. Аналогично и с пересекающимися пространствами, то есть с параллельными мирами.

А сейчас я упомяну ещё о некоторых парадоксах квантовой механики – кота Шредингера и друга Вигнера. Первый назван именем учёного, который проиллюстрировал парадоксальность квантовой механики мысленным экспериментом и фактически показывает отличие понятия реальности в квантовой механике от той, как она понимается в классической физике и в нашей обычной интуиции. В чём состоит парадокс, предложенный Шредингером? Возьмём ящик и опустим в него кота и нестабильный, постепенно распадающийся атом. Поместим туда же устройство, которое разрушает ампулу с ядом, когда атом распадётся. В начале эксперимента атом ещё цел и кот жив. Если в некоторый момент атом распадётся, то кот умрёт. Эти два случая ясны, и их описание в квантовой механике не отличаются существенно от описания в классической физике.

Однако атом, как микроскопический объект, подчиняется законам квантовой механики, и это позволяет сделать необычные выводы. Согласно законам квантовой механики, любое состояние системы – вектор. Это означает, что так же, как в случае обычных векторов, состояния квантовой системы можно суммировать. Результат в случае двух или нескольких векторов состояния в квантовой механике называют суперпозицией. Состояние атома в начальный момент – это «нераспавшийся атом», но со временем оно становится суперпозицией – нераспавшийся атом + распавшийся атом. Первое слагаемое этой суммы постепенно уменьшается, а второе – увеличивается.

 

Вспомним теперь, что жизнь кота непосредственно связано с целостностью атома в силу того, что вместе с ним в ящике находится устройство, убивающее его, когда атом распадается. Поэтому мы должны заключить, что через некоторое время после начала опыта состояние системы из атома и кота, представляет собой суперпозицию – нераспавшийся атом и живой кот + распавшийся атом и мёртвый кот. Что же мы увидим, если откроем ящик в этот момент? Возможно, ли увидеть кота в состоянии, соответствующем суперпозиции живого кота и мёртвого? Очевидно, нет. Только либо живого кота и нераспавшийся атом, либо мёртвого и уже распавшийся атом.

Это парадокс. Описывая состояние в закрытом ящике, в соответствии с квантовой механикой мы должны представить его как суперпозицию. Но для открытого ящика описание, в соответствии с нашим опытом, должно быть одним из компонентов этой суперпозиции. Мы видим, что в этом рассуждении, приводящем к парадоксу, существенную роль играет наше Сознание. Пока ящик не открыт, информация в наше Сознание о состоянии системы ещё не поступила, а после открытия ящика мы осознаем его.

Второй парадокс назван именем Вигнера. Это усложнённый эксперимент кота Шредингера путём введения в систему категории друзей. После завершения опыта, экспериментатор открывает коробку и видит живого кота. Суперпозиция в момент открытия коробки переходит в состояние «ядро не распалось, кот жив». Таким образом, в лаборатории кот признан живым. За её пределами находится друг экспериментатора. Ему неизвестно, жив кот, или мёртв. Друг признает кота живым только тогда, когда экспериментатор сообщит ему об этом, то есть даст информацию. Но все остальные друзья ещё не признали кота живым, и произойдёт это только тогда, когда им сообщат результат эксперимента. Таким образом, кота можно признать живым только тогда, когда каждый человек Вселенной, то есть все друзья, узнают результат эксперимента. До этого кот остаётся полуживым и полумёртвым одновременно.

Этот парадокс показывает роль информации, получаемой нашим Сознанием. Учитывая «теорию струн» и эти парадоксы, я разработал квантовую модель Сознания: «Элементарные частицы атомов вещества, в том числе и биологического, также состоят из струн, поэтому Сознание человека – это резонанс струн серого вещества головного мозга и Вселенной. Он не зависит от работы самого мозга и нарушается в случае изменения частоты вибрации суперструн Вселенной или Сознанием человека из-за информации, поступающей в него». А поскольку суперструны Вселенной вибрируют с постоянной частотой, а мозг человека при нарушении резонанса подстраивает свою частоту вибрации в унисон с полученной информацией, то к нам приходит её понимание. В ситуации с Вашим коматозником можно сделать вывод. Этот человек (кот Шредингера) будет находиться в состоянии «полумёртвый и полуживой» до тех пор, пока медсестра (экспериментатор) не сообщит нам (друзьям) и каждому человеку Вселенной о его состоянии.

– А почему мозг подстраивает свою частоту вибрации к резонансу? – задал вопрос Илья Кузьмич.

– Это постулат, – ответил Куликов, – мы являемся микрочастицами Вселенной и поэтому в наш мозг заложена программа существования в гармонии с оной! Если этого не происходит с отдельно взятым индивидуумом, то такого человека вы, медики, считаете сумасшедшим. Его Сознание неадекватно воспринимает информацию, мозг работает непредсказуемо, его поступки, как результат осознания информации, иррациональны.

– Но мы, медики, считаем сумасшедшими тех, у кого мозг работает с отклонениями от нормы, – возразил Протасов, – неужели Вы уверены, что это связано с неспособностью мозга, подстраиваться в резонанс?

– Я о том же и сказал! – отреагировал Куликов, – конечно же, отклонения эти могут зависеть от множества индивидуальных патологических причин, и разработанная мною квантовая модель не делает революции в медицине. Но с её помощью легко можно объяснить, что такое Сверхинтуиция, Мистика, Ясновидение, научное Озарение.

– Интересно будет послушать, профессор, – с нескрываемой иронией произнёс Протасов, – не обращайте внимания на мою ироничность, она объясняется тем, что возможно в перспективе врачей заменят специалисты по квантовой механике….

– Наука на завершающем этапе создания искусственного интеллекта, – констатировал Куликов, – в перспективе, возможно, что и врачей и нас физиков заменят роботы! Я не говорю уже о других специальностях, инженерах, рабочих и служащих.

– Продолжайте, Анатолий Петрович, – попросил Илья Кузьмич, – извините, что перебиваю!

Сверхинтуиция, – продолжал Куликов, – это способ принятия такого решения, которое, не может быть получено логическим путём. Вам известна ситуация, когда необходимо принять важное решение, но Вы не можете отдать предпочтение одному из нескольких вариантов. Неопределённость может тянуться много дней, вызывая болезненное чувство беспомощности и отчаяния. Ваше бесплодное размышление идёт по кругу, не принося результата. У Вас появляется дискомфорт от того, что нарушается резонанс вибрации струн головного мозга от поступившей информации, потому что решение не принято. Как остановить это бесконечное раздумье и выбрать одно из многих решений и избежать роковой ошибки?

Ответ удивительно прост. Нужно на время не думать об этой проблеме, отключить Сознание, пусть головной мозг подгоняет свою частоту вибрации, не вызывая эмоционального воздействия. Необходимо отвлечься, полезно сделать что-нибудь приятное, например, просто пойти в кино или в театр. Решение придёт неожиданно, сопровождаемое восхитительным чувством, что оно и есть единственно возможное верное решение. То, что произойдёт в дальнейшем, подтвердит – найденное таким образом решение действительно наилучшее из всех возможных. Конечно, при условии соответствия способности Вашего мозга уровню знаний по данной проблеме. То есть имеющейся в нем информации.

Вот два ярких примера подобных ситуаций. Ныряльщик, который собирается установить рекорд глубины погружения без аппарата, подвергается большой опасности при выборе момента, когда он достигает максимальной глубины и нужно возвращаться. Он должен выбрать момент, чтобы погрузиться максимально глубоко и в то же время сохранить достаточно воздуха, чтобы вернуться на поверхность. Задержка с возвратом может означать смерть. Как принять правильное решение? Опытные спортсмены говорят, что перед этим критическим моментом они погружаются в транс и определяют момент возвращения интуитивно. Сознание не принимает в этом участия, оно отключено от выбора. Именно бессознательная работа мозга делает это оптимальным образом.

Другой пример относится к случаю, который произошёл с российским космонавтом Георгием Михайловичем Гречко. Во время одного из космических полётов он попал в нештатную ситуацию при возвращении на Землю. Основной двигатель отказал, и пришлось использовать маленький вспомогательный с ограниченным ресурсом. Управление осуществлялось в ручном режиме, двигатель нужно было выключить в требуемый момент так, чтобы космический аппарат начал медленно снижаться в режиме свободного падения. Неправильный выбор момента выключения мог привести либо к жёсткой посадке, либо к переходу аппарата на круговую орбиту без шанса приземлиться. У космонавта не было никакой возможности рассчитать необходимое время (определить нужный момент), но он выбрал его интуитивно и избежал обеих опасностей. Выбор был сделан в большом эмоциональном напряжении, и вполне вероятно, что космонавт находился в состоянии транса.

Купите 3 книги одновременно и выберите четвёртую в подарок!

Чтобы воспользоваться акцией, добавьте нужные книги в корзину. Сделать это можно на странице каждой книги, либо в общем списке:

  1. Нажмите на многоточие
    рядом с книгой
  2. Выберите пункт
    «Добавить в корзину»