Читать книгу: «Системный подход к управлению высокотехнологичными проектами. 2-е издание, переработанное и дополненное», страница 2
Глава 2. База системной инженерии
2.1. Определение системной инженерии
Основным объектом приложения системной инженерии являются системы. Системой кратко называют интегрированный сплав людей, продуктов и процессов, обеспечивающий возможность удовлетворить требуемые нужды или цели.
Перечислим некоторые типы систем. Это бизнес-системы (управление исследованиями и разработками, производством продуктов и услуг для использования на рынке), образовательные системы (обучение и аттестация), финансовые системы (поддержка личных, коммерческих и других финансовых операций), правительственные системы (связанные с управлением людьми как обществом на уровне государства, области, города и т.д.), медицинские системы (больницы, врачи и терапевтические учреждения, управляющие потребностями здравоохранения населения), транспортные системы (наземные, морские, воздушные и космические перевозки людей и грузов), газо- и нефтеперекачивающие трубопроводные системы, городские системы (управление инфраструктурой и транспортом района, города, области), культурные системы (исполнительское искусство музыки и других развлечений, гражданские модели поведения) и др.
Примеры систем (по возрастанию сложности):
•двигатель самолета по сравнению с набором деталей;
• самолет с двигателями и авионикой;
• авиатранспортная система (АТС) с самолетами, пассажирами, грузами, тренажерами и др.;
• система систем, включая АТС, аэропорты, инфраструктуры обслуживания и наземного наблюдения.
Приведем определения из стандарта ГОСТ 56136—2014.
У каждой системы имеется жизненный цикл (ЖЦ). Это совокупность явлений и процессов, повторяющаяся с периодичностью, определяемой временем существования изделия (системы), от начала разработки до вывода из эксплуатации (утилизации).
Этапом жизненного цикла называют часть ЖЦ, выделяемую по признакам моментов контроля (контрольных рубежей), в которых предусматривается проверка характеристик проектных решений типовой конструкции и (или) физических характеристик экземпляров изделий.
Жизненный цикл проекта можно разбить на отдельные фазы, отделенные контрольными рубежами (воротами принятия решений). У NASA 7 фаз ЖЦ, в GE их 10, у Airbus 14 последовательных этапов. Пример ЖЦ системы показан на рис. 2.

Рис. 2. Типовые этапы жизненного цикла системы
Контрольный рубеж (КР) этапа жизненного цикла является моментом завершения этапа ЖЦ, на котором предусматривается проверка характеристик проектных решений типовой конструкции и (или) физических характеристик экземпляров изделий.
Перечислим основные фазы ЖЦ продукта и типовые контрольные рубежи (КР), или ворота принятия решений, на различных этапах модельного ЖЦ программы создания изделия, показанные на рис. 2.
1. Предварительный анализ изделия (КР 0).
2. Маркетинг для определения бизнес-возможности создания разрабатываемого продукта (КР 1).
3. Концептуальное проектирование и оценка выполнимости (КР 2).
4. Определение облика изделия, эскизный проект (КР 3).
5. Изготовление опытных образцов (КР 4).
6. Утверждение («замораживание») конструкции (КР 5).
7. Испытания и сертификация продукта (КР 6).
8. Производство и эксплуатация (КР 7).
9. Вывод из эксплуатации и закрытие программы (КР 8).
Декомпозиция проекта на этапы ЖЦ переводит организацию процесса разработки на более мелкие и управляемые части. Переход фазовых границ определяется в пунктах оценки прогресса проекта и решений типа «идти / не идти». То есть на контрольном рубеже следует принять решение, продолжать ли проект на следующем этапе, вернуться к чертежной доске и переделать текущую работу завершаемой фазы, или прекратить проект.
Этапы жизненного цикла используют, чтобы помочь планировать и управлять всеми основными событиями разработки высокотехнологичной сложной системы или продукта. Разделение на фазы дает менеджерам возможность контролировать и направлять действия осознанно, упорядоченно и методично, что позволяет реагировать на изменения. Это увеличивает прозрачность и упрощает контроль для успешного завершения проекта.
ЖЦ проекта представляет собой важный управленческий инструмент, который используется для распределения ресурсов, обеспечения доступности ключевых лиц, интеграции действий, поддержки своевременного принятия решений, снижения рисков и создания механизмов контроля и руководства. Так как ранние решения влияют на последующие деятельности и «более зрелую» систему труднее изменить по ходу проекта, в системной инженерии сделанное на ранних стадиях имеет наибольшее влияние на успех проекта в целом.
В истории человечества следы системно-инженерного подхода заметны при сооружении египетских пирамид, римских дорог, азиатских ирригационных каналов и других известных объектов, дошедших до наших дней. Например, «подушку» под римской дорогой для колесниц укладывали по правилам того времени из различных материалов до 5 метров толщиной. Спустя столетия эти дороги заасфальтированы и используются для современных автомобилей. Каменные мосты через реки в некоторых голландских городах используются без ремонта на протяжении 300…400 лет. Т.е. выполнено условие, когда действия на каждой фазе ЖЦ системы были направлены на улучшение жизненного цикла на последующих этапах.
Великий российский инженер XIX—XX веков Владимир Шухов за годы профессиональной деятельности реализовал со своими подрядными коллективами более 700 проектов. При этом уровень работ находился на вершине тогдашних инженерных знаний, оформлены патенты мирового уровня: горизонтальный и вертикальный паровые котлы, форсунка для мазута, нефтеналивная баржа, стальной цилиндрический резервуар, висячее сетчатое покрытие для зданий, арочное покрытие, нефтепровод, промышленная крекинг-установка, ажурная гиперболоидная башня (телецентр на Шаболовке в Москве). Всего построено около 200 башен, около 500 мостов, зерновые элеваторы, доменные печи, плавучие ворота сухого дока, вращающаяся сцена МХАТ.
План ГОЭЛРО в послереволюционной России был утвержден в декабре 1921 г. и к 1930 г. перевыполнен. В результате Россия вышла на 3-е место в мире по производству электроэнергии.
Причинами возникновения системной инженерии в ее сегодняшнем виде стали факторы, появившиеся в мире после Второй мировой войны. Активизировалась реализация больших программ, в первую очередь военно-промышленного направления, и основными приводами развития управленческой мысли стали:
1) развитие затратных высокотехнологичных программ с учетом управления рисками и информационных технологий;
2) активизация рыночного соревнования между странами и компаниями (развитие маркетинга);
3) углубление специализации разрабатываемых систем, что выявило важность типовой декомпозиции элементов, управления требованиями, интерфейсами, верификации и валидации;
4) нарастание кадровых проблем для высокотехнологичных отраслей.
Появились книги, справочники и стандарты по теме: H. Good, R. Machol, Системотехника. Введение в проектирование больших систем (1957 г.), справочник Военно-воздушных сил США по системной инженерии (1966 г.), первый СИ стандарт MIL-STD 499 (1969 г.). В СССР один из первых курсов СИ был издан в 1976 г., В. Дружинин, Д. Конторов «Вопросы военной системотехники».
Примененные технологии системной инженерии облегчили успешное получение конкурентоспособных разработок. Переход на командные методы работы по ролям упростил создание результативных коллективов с эффективными лидерами. Для реализации этих задач необходимо было обучить многочисленный персонал. Вследствие необходимости создания новых изделий и освоения высоких технологий ряду стран удалось стандартизовать подготовку творческих инженеров и менеджеров на основе подходов СИ. Сегодня все компании высокотехнологичного сектора имеют справочники системной инженерии в открытом доступе в сети интернет, адаптированные под нужный профиль (в перечне указан год актуального издания).
• Некоммерческое общество системных инженеров INCOSE, 5 изд., 2023 [10].
• Космическое агентство NASA, 3 изд., США, 2017 [7].
• Администрация гражданской авиации США FAA, 2015.
• Компания-интегратор интеллектуальных транспортных систем ITS, 3 изд., 2009.
• Министерство обороны США, DoD, 2006.
• Компания-интегратор авиатехники Airbus, 2004.
• Производитель авиационной техники Boeing, 2003.
При этом перечисленные документы включены для обязательного исполнения в требования для подрядчиков и поставщиков, чем обеспечивается скорость и глубина внедрения методологического подхода.
Приведем актуальные определения предмета книги от общества сиcтемных инженеров INCOSE (2019) и стандарта ISO/IEC/IEEE 15288 (2023).
Системой называют совокупность расположения частей или элементов, которые вместе демонстрируют поведение или значение, которого нет у отдельных компонентов. Системы могут быть физическими, концептуальными (абстрактными информационными), или их комбинацией.
Системной инженерией называют трансдисциплинарный и интегративный подход, позволяющий успешно реализовывать, использовать и выводить из эксплуатации спроектированные системы с использованием системных принципов и концепций, а также научных, технологических и управленческих методов.
СИ фокусируется на:
• установлении, балансировке и интеграции целей заинтересованных сторон, целей и критериев успеха, а также определении фактических или ожидаемых потребностей заинтересованных сторон, операционных концепций и требуемой функциональности, начиная с раннего цикла разработки;
• установлении соответствующей модели жизненного цикла, процессного подхода и структур управления с учетом уровней сложности, неопределенности, изменений и разнообразия;
• создании и оценке альтернативных концепций и архитектур решений; базовых требований и моделирования выбранной архитектуры решения для каждого этапа проекта;
• выполнении синтеза проекта, верификации и валидации системы;
• принятии во внимание проблемных и решающих областей, необходимых систем и служб обеспечения, определении ролей и отношений между частями системы для ее общего поведения и производительности, и балансировке всех этих факторов для достижения удовлетворительного результата.
Процесс СИ завершается интеграцией трех основных активностей:
1) фаза разработки, которая контролирует процесс проектирования и обеспечивает базовые результаты, увязывающие проектные усилия;
2) системная инженерия процесса, обеспечивающего структуру для решения проектных проблем и отслеживающего поток требований через проектные усилия;
3) интеграция жизненного цикла, которая вовлекает заказчиков в проектный процесс и обеспечивает жизнеспособность разработанной системы на всех стадиях ЖЦ.
Инженерной называют систему, разработанную или адаптированную для взаимодействия с ожидаемой эксплуатационной средой для достижения одной или нескольких предполагаемых целей при соблюдении применимых ограничений. Инженерные системы могут включать людей, продукты, услуги, информацию, процессы и природные элементы.
Инженерный менеджмент, как часть процессов системной инженерии, включает искусство и науку планирования, организации, распределения ресурсов, а также управления и контроля деятельности, имеющей технологический компонент.
Отметим, что в определении СИ сделан упор именно на управленческую часть системно-инженерного подхода. Применение СИ на практике позволяет вовремя выполнять решение сложнейших задач, сокращать сроки и стоимость разработок в 1,5…2 раза, снижать количество ошибок в конструкторской документации от 2 до 5 раз. Системная инженерия демонстрирует эффективность разработанных подходов, является выгодным инструментом создания новых изделий, ведет к уменьшению затрат путем оптимизации процессов и исключения переделок (из-за увеличения глубины проработки и исправления ошибок на ранних стадиях проекта). Подход СИ снижает коэффициент экспоненты убытков на масштабе бюджета проекта, причем чем крупнее проект, тем выше эффект применения СИ. Статистика NASA показала, что можно снизить перерасход бюджета на 20…90% (от мелких до очень крупных проектов). При этом оптимальная доля затрат на деятельность системных инженеров составит от 5 до 35% соответственно [7].
В стандарте «Процессы жизненного цикла систем» ISO 15288:2015 (ГОСТ Р 57193—2016) сегодня перечислены 30 базовых процессов жизненного цикла систем (рис. 3). Эти процессы разделены на четыре основные группы.

Рис. 3. Базовые процессы жизненного цикла систем
При разработке систем, продуктов или услуг необходимо найти ответы на несколько фундаментальных вопросов.
1. Что такое система?
2. Что входит в границы системы?
3. Какую роль играет система в организации пользователя?
4. Какие действия в эксплуатации выполняет система?
5. Какие ориентированные на результаты выходы дает система?
При разработке нового продукта требуется организовать структуру, которая оптимизирует управление и руководство, облегчает внутренний обмен информацией, принятие решений и потоки поставок. Рынки высоких технологий требуют от нового продукта удовлетворения уровня качества при запланированных расходах и, что критично, в заданные сроки. Координация инжиниринга, производства, обеспечения качества, маркетинговых функций в процессе разработки нового продукта является жизненно важной. Необходимость использования подходов системной инженерии обусловлена несовершенством устаревших процессов разработки новых изделий. Результатом применения системной инженерии будет повышение качества исполнения программ (выполнение проектов в заданные сроки, в рамках бюджета, согласно требованиям, с высоким качеством).
Для реализации проектов и программ в системной инженерии используют основные варианты декомпозиции.
• Декомпозиция проблемы: разделение сложной проблемы на более простые позволяет легче найти решение и четко сформулировать задачи для каждого сотрудника.
• Декомпозиция времени: разбиение проекта на фазы с указанием конкретных результатов позволяет эффективно контролировать процесс разработки, измерять эффективность и вовремя применять корректирующие меры.
• Декомпозиция продукта: разделение самых сложных изделий на системы, подсистемы, сборки и узлы позволяет эффективно управлять конфигурацией и поставщиками.
• Декомпозиция действий с последующей интеграцией: определяет четкую последовательность необходимых действий (требования, спецификация, декомпозиция, проект, интеграция, верификация, эксплуатация, вывод из эксплуатации).
СИ учитывает деловые и технические потребности приобретателей с целью предоставления качественного решения, которое отвечает требованиям заинтересованных сторон, подходит для достижения цели в эксплуатации и позволяет избежать или минимизировать неблагоприятные непреднамеренные последствия.
Целью всех видов деятельности СИ является управление рисками, включая степень снижения рисков непредоставления того, что хочет приобретатель, риска несвоевременной поставки, риска избыточных затрат и риска негативных непреднамеренных последствий.
2.2. Системное мышление
В процессе реализации высокотехнологичных проектов приходится преодолевать текущие вызовы:
1) интеграции развивающихся информационно-емких систем и технологий;
2) множества заинтересованных сторон с потенциально расходящимися точками зрения и политически мотивированными программами, дефицитными и динамично меняющимися ресурсами, доступными для поддержки проекта или программы;
3) постоянно меняющиеся требования для выполнения;
4) технологические достижения, которые нужно потенциально совместить с имеющимися и развивающимися инфраструктурами для поддержки;
5) срочность реагирования на изменения в операционных предположениях;
6) возрастающие сложности и неопределенности жизненного цикла систем.
Мышлением называют функцию человеческого мозга, отвечающую за концептуальное отражение существенных общих законов в предметах и процессах объективной действительности. Системное мышление (СМ) может предоставить менеджерам и лидерам инженерных специальностей ценные возможности для более эффективного решения упомянутых сложных проблемных областей.
СМ можно определить как новый способ взглянуть и мысленно сформировать видимые сущности; мировоззрение и образ мышления. Где следует видеть сущность или единицу в первую очередь как единое целое, с его соответствием и отношением к окружающей среде. В основе СМ лежит концепция целостности (холизма), которая предполагает, что понимание сложной системы должно охватывать уровень всей системы. Системное мышление определяет целостную философию, способную раскрыть критическую структуру системы: ее границы, входы, выходы, пространственную ориентацию, структуру процессов и сложные взаимодействия системы с окружающей средой. СМ позволяет определить для конкретной задачи набор основных системных принципов, чтобы руководить инженерами на базе более эффективного мышления, решений, действий и интерпретаций для лучшего понимания и разрешения сложных проблемных областей. Разбиение системы на составные части не дает адекватного понимания того, как система функционирует в целом.
Возрастающую сложность можно представить как динамичную, неопределенную, возникающую ситуацию, содержащую большое количество тесно взаимосвязанных элементов и факторов. Диапазон альтернатив индивидуальных точек зрения, целей и предполагаемых интересов усложняет согласование для продвижения вперед. При этом непредвиденные факторы могут включать распределение ограниченных ресурсов, контроль исполнения, личные предпочтения, интересы и др. В сложных проблемных областях заинтересованными сторонами следует считать тех физических или юридических лиц, которые имеют прямой или предполагаемый интерес в решении проблемы, что расширяет их круг, в том числе по мере изучения проблемной области.
Границы сложных систем неоднозначны. Их критерии являются произвольными и часто качественными по своему характеру. Природа границ может принимать различные формы (например, географические, временные, концептуальные, функциональные, физические), которые могут меняться со временем.
В настоящее время объем перерабатываемых для реализации проекта данных и информации растет в геометрической прогрессии. Нужны разработки эффективных подходов к сканированию, фильтрации, сокращению и преобразованию информации в действенные формы. Часто лидерам программ приходится пробираться через «болото» информации, стремясь определить выборки, которые необходимы для принятия решений и действий.
Происходящая смена поколений в рабочей силе вносит дополнительные вопросы в проблемную область. При интеграции командных усилий для создания систем необходимо преодолевать различия между поколениями. В части длительных сроков разработки новых продуктов следует понимать, что используемые знания могут носить временный характер, неполны и подвержены ошибкам.
Использование системного мышления расширяет когнитивные навыки, то есть умственные способности, связанные с тем, как мозг человека обрабатывает информацию об окружающем мире. К ним относятся внимание, память, логика и мышление, визуальная и слуховая память, скорость обработки информации, ответных реакций, регуляция эмоций и др. Это облегчает формулирование проблем, представляя набор доступных альтернатив для решения. Принимаемые решения неизбежно оказывают влияние на другие компоненты в системе, давая возможность делать осознанный выбор.
Для реализации принципов системного мышления рекомендуется действовать следующим образом.
На первом этапе необходимо провести всесторонний анализ текущей ситуации с учетом ее потенциального влияния на возможности, потребности организации и заинтересованных сторон посредством оценки технологических рисков и уровней готовности технологии. Оценивают потенциальные решения об осуществимости.
Второй этап включает выявление и определение желаемой цели, требований бизнеса, а также потребностей заинтересованных сторон. Также необходимо тщательно рассмотреть оценку затрат и планирование процесса разработки.
Третий этап содержит разработку различных типов концепций. Определяют несколько альтернатив для данной концепции, в которых потенциально предложены возможности, повышение производительности или сокращение расходов.
Четвертая фаза включает оценку и выбор предпочтительных альтернатив концепций. СМ подчеркивает необходимость их тестирования и оценки. Модели и прототипы здесь незаменимы для более глубокого понимания потребностей заинтересованных сторон, принятия архитектурных компромиссов, выявления рисков и возможностей.
Для повышения эффективности системного мышления полезно использовать некоторые общие принципы выбора альтернатив его применения.
Выбор сложности (многомерных проблем, рабочих решений) или простоты (избегания неопределенности, работы над линейными проблемами, предпочтения лучших решений и мелкомасштабных задач).
Позиция глобальной интеграции (зависимых решений и мирового уровня производительности) или автономии (независимых решений и местного уровня производительности).
Взаимодействие глобального типа (следовать общему плану, работа в команде и меньше интересов в причинно-следственных связях) или изоляции (склонность к локальному взаимодействию, подробному плану, предпочтение работать индивидуально, в небольших системах и больше интереса к причинно-следственным решениям).
Непротивление изменениям требований (принимать во внимание несколько точек зрения, уделять больше внимания долгосрочным планам, лучше работать в меняющейся среде) или принятие неизменных требований (больше сосредотачиваться на краткосрочных планах и мышлении, иметь тенденцию фиксировать решения и лучше работать в стабильной среде).
Типовые ошибки при решении системных проблем включают, например, такие пункты.
• Выбор неправильных заинтересованных сторон. Отсутствие их достоверного учета может сделать системное решение неадекватным до его развертывания.
• Узкий набор вариантов, когда из-за быстрого исключения возможных альтернативных системных опций из исследования выпадают потенциально эффективные решения.
• Неверно определены суженные границы системы, что может привести к поиску решений неправильной системной проблемы.
• Неправильная формулировка проблемы, когда язык и способ ее описания могут привести к ограничению возможных подходов исследования системы.
• Неспособность применения СМ, тогда как сложные системные проблемы должны рассматриваться комплексно с точки зрения взаимосвязей, шаблонов и границ.
Полезно принимать во внимание несколько принципов, чтобы помочь избежать потенциальных ловушек при применении системного мышления.
1. Уникальность проблемы и потребности. Даже при наличии сходства с предыдущими задачами предположение об уникальности имеет решающее значение для избегания поспешной предрасположенности к конкретному подходу, который мог быть успешным ранее.
2. Уникальность контекста проблемы, набора обстоятельств, факторов, условий или закономерностей, которые ограничат проблему системы и возможные решения.
3. Уникальность методологии развертывания, которая должна быть совместимой и подходящей для конкретной задачи, которая в свою очередь должна быть совместима с решаемой проблемой и содержанием.
4. Системное обрамление. При выработке целостного видения ситуации, разрабатывая несколько правдоподобных сценариев, инженеры и менеджеры должны открывать потенциальное пространство для принятия решений.
5. Предвидение появления системы как результата предполагает сосредоточение внимания на альтернативах, которые можно выявлять, анализировать, эффективно реагировать и оценивать для решения возникающих условий.
Начислим
+15
Покупайте книги и получайте бонусы в Литрес, Читай-городе и Буквоеде.
Участвовать в бонусной программе