Холодильник Эйнштейна. Как перепад температур объясняет Вселенную

Текст
Автор:
Из серии: Элементы 2.0
0
Отзывы
Читать фрагмент
Отметить прочитанной
Как читать книгу после покупки
Шрифт:Меньше АаБольше Аа

Глава 4
Долина Клайда

Caino? Je ne connais pas cet auteur[3].

Парижский книготорговец в ответ Уильяму Томсону

В 1845 году, за два года до встречи в Оксфорде, пока Джоуль трудился в своей домашней лаборатории в Манчестере, Уильям Томсон шагал по улицам Парижа от одного книжного магазина к другому, надеясь отыскать трактат Сади Карно “Размышления о движущей силе огня”. Томсон наткнулся на описание “Размышлений” во французском научном журнале, и прочитанное подстегнуло его воображение. Он решил, что трактат был прорывом в понимании теплоты. Однако из-за шотландского акцента Томсона книготорговцы никак не могли разобрать фамилию автора, книгу которого он искал. Даже когда он подчеркивал “р” в фамилии Карно, ему предлагали только книгу о “каком-то социальном вопросе”, написанную братом Сади, политиком Ипполитом Карно.

В Париже Томсон проходил заключительный этап образовательного курса, который с детства готовил его к научной славе. Томсон родился в Белфасте в 1824 году, а восемь лет спустя вместе с семьей переехал в Глазго, когда его отец был назначен должность профессора математики в городской университет. В пятнадцать лет Томсон получил в этом университете награду за анализ того, как Земля приобрела свою форму. Год спустя его математический талант проявился снова, когда он познакомился с “Аналитической теорией тепла” французского ученого Жозефа Фурье. Эта работа поражала отсутствием какого бы то ни было определения теплоты. Фурье ставил перед собой задачу математически описать свойства теплоты и, в частности, теплового потока. В качестве примера он приводил металлический стержень, горячий на одном конце и холодный на другом. По опыту мы знаем, что теплота распространяется от горячего конца к холодному, пока температура не выравняется. Фурье показал, как математически описать такое явление. Его подход для того времени был необычен, и Фурье подвергся критике. В шестнадцать лет Томсон опубликовал подробную аргументацию методов француза в научном журнале Cambridge Mathematics Journal.

Гордый талантом сына, отец Томсона отправил его изучать математику в Кембридж. За два предыдущих десятилетия новое поколение кембриджских профессоров поддалось европейским веяниям и восстановило репутацию университета как главного в стране центра математической подготовки. Кембриджские коллеги и преподаватели Томсона подтвердили его одаренность. Серьезные ученые читали его очерки и удивлялись, что автору не исполнилось и двадцати лет.

Тем временем у отца Томсона родился план сделать сына следующим профессором натурфилософии в Университете Глазго. (Позже в XIX веке специалистов по натурфилософии стали называть современным термином “физик”.) Эту должность занимал почтенный ученый со слабым здоровьем, но отец Томсона опасался, что на нее не возьмут молодого кандидата, имеющего лишь кембриджское математическое образование, то есть обладающего талантом к абстрактному мышлению, но пока не проявившего способность демонстрировать студентам физические явления, которая высоко ценилась в Университете Глазго, ведущем учебном заведении в промышленном городе, где в почете была практичность. Томсон-старший, однако, слышал, что обучение наглядными методами особенно хорошо развито во Франции. Он посоветовал сыну по окончании Кембриджа получить рекомендательные письма в адрес видных французских специалистов, отправиться в Париж и заняться практикой.

В Париже Томсон работал ассистентом физика-экспериментатора Виктора Реньо, который получал от французского правительства финансирование для изучения термальных свойств пара. (Реньо, как и Карно, оказался в выигрыше, когда французское революционное правительство взяло курс на народное просвещение. В восемь лет он остался сиротой и жил в нищете, но затем сумел поступить в Политехническую школу и стал одним из ведущих ученых Франции.) Работа в лаборатории Реньо – даже на низкой должности, где требовалось лишь готовить пробирки и приводить в действие воздушный насос, – стала поворотным моментом в жизни молодого Томсона. Он своими глазами видел, как ведут себя вода и пар при нагревании и охлаждении. Наблюдая за усердием Реньо, он также осознал, какую важную роль в экспериментальной физике играют терпение и точность. И главное, именно в Париже – “вне всяких сомнений, альма-матер [его] научной юности” – Томсон познакомился с идеями Сади Карно.

В апреле 1845 года Томсон вернулся в Британию, где вынужден был целый год ждать, пока освободится профессорская должность в Глазго, поскольку его немощный предшественник еще цеплялся за жизнь. Тем временем Томсон зарабатывал, давая частные уроки студентам Кембриджа, и продолжал осмысливать идеи Карно, которые в деталях обсуждал со своим братом Джеймсом, также талантливым ученым. Хотя Джеймс, который был на два года старше Уильяма, всегда уступал брату, он прекрасно учился в Университете Глазго и затем работал в качестве ученика в нескольких фирмах Англии и Шотландии. Его страстью было инженерное дело – “Он говорит о нем весь день напролет”, – и они с Уильямом прекрасно дополняли друг друга в науке. Уильям обладал математическими навыками и хорошо разбирался в лабораторной физике. Джеймс имел непосредственный опыт работы с реальными паровыми машинами. Ум Уильяма был остр и гибок, а Джеймса – въедлив и упрям. Братья обожали говорить о науке и инженерии, но слушать их беседы было непросто: “Довольно забавно наблюдать, как оба брата говорят что-то друг другу и ни один из них другого не слушает”.

Братья Томсоны разглядели в работе Карно рациональное зерно. Уильяму понравились абстрактные рассуждения француза, а Джеймс видел подтверждение его слов на практике – в частности, в то время, когда работал с паровыми двигателями, предназначенными для кораблей. Несмотря на дешевизну угля, их создатели задумывались об эффективности их работы, поскольку масса необходимого топлива ограничивала количество груза, которое корабль мог взять на борт, и дальность плавания. Конденсаторы двигателей работали при более высоких температурах, чем температура воды за бортом, и Джеймс интуитивно понимал, что экономии это не способствует. (В конденсаторе пар преобразуется обратно в воду, чтобы он больше не давил на поршень.) Джеймс полагал, что в таком случае теплота в конденсаторе теряется, не выполняя никакой работы. По мнению Джеймса, если найти способ конденсировать пар при той же температуре, что и температура воды за бортом, корабли смогут преодолевать большие расстояния при том же расходе угля. Такое суждение перекликалось с анализом Карно – “прекрасным образцом логики”, как Джеймс описал трактат француза Уильяму.

В сентябре 1846 года профессор натурфилософии Университета Глазго умер, и Уильям Томсон, которому было всего двадцать два, занял его место. Он основал в университете первую в Британии физическую лабораторию, где студенты принимали участие в лабораторной работе. Томсон преподавал с большим энтузиазмом, но получал от студентов смешанные отклики: его страсть к науке их вдохновляла, но любовь отклоняться от темы сбивала их с толку.

Томсон отдавал приоритет изучению свойств теплоты и пара, что было неизбежно, ведь за стенами университета, как и в Манчестере, промышленная деятельность вышла на беспрецедентный уровень. В Глазго в основном занимались судостроением, а не производством текстиля, и несколько студентов Томсона происходили из семей кораблестроителей и инженеров. В то десятилетие новое судно спускалось с верфей Глазго на реку Клайд каждые десять дней. Одним из самых величественных в то время стал 1609-тонный пароход “Сити-оф-Глазго” с металлическим корпусом и винтом вместо гребного колеса. Он менее чем за три недели пересекал Атлантику, доставляя на восточное побережье Америки более 400 пассажиров. Такие суда помогали населять Новый Свет.

Помимо судостроения, в Глазго также быстро развивались вспомогательные отрасли, от хлопкопрядильных фабрик до химических и сталелитейных заводов. В поисках работы в город стекались приезжие из Ирландии и шотландского Хайленда, и население Глазго возросло с 77 тысяч человек в 1800 году почти до 300 тысяч в 1850 году. Навестив в 1851 году живущего в Глазго брата, один человек отметил, что узнавал о наступлении “шести часов, когда далеко внизу, в долине Клайда, раздавался удар огромного парового молота, которому тотчас отвечала тысяча молотов, ударявших по тысяче наковален, возвещая о том, что город проснулся и готов к новому трудовому дню”.

Уильяму Томсону казалось, что за всеми звуками, отмерявшими время в этом городе, стоят идеи Сади Карно. К такому выводу его подталкивали образование, интуиция и беседы с братом. Этим объясняются смешанные чувства, которые он испытал при встрече с Джеймсом Джоулем в Оксфорде в 1847 году. Убежденность Джоуля, что теплоту и работу можно преобразовывать друг в друга, противоречила сделанному Карно предположению, что теплоту, состоящую из теплорода, невозможно ни создавать, ни уничтожать.

Затем, осенью 1848 года, Уильям Томсон раздобыл экземпляр трактата Карно. Какие бы сомнения ни заронил в нем Джоуль, теперь Томсон был уверен, что труд француза слишком важен, чтобы и дальше пребывать в научном забвении. Он приступил к работе над статьей, которая должна была пролить свет на идеи Карно и представить аргументы в их поддержку. Ее название – “Изложение теории Карно о движущей силе тепла с приведением численных результатов, полученных Реньо в экспериментах с паром” – преуменьшает ее значение. Это не просто английский пересказ французского оригинала, а одна из самых важных работ, написанных Томсоном за его долгую и блестящую карьеру, и не в последнюю очередь ее значимость объясняется тем, что в ней Томсон ввел в научный лексикон новое слово: термодинамика.

 

Еще важнее то, что Томсон выбрал для “Изложения”, казалось бы, противоречивую стратегию. В основной части он приводит всевозможные теоретические и экспериментальные аргументы в поддержку трактата Карно. При этом он время от времени снабжает текст сносками, в которых рассказывает о работе Джоуля, выступая в качестве докучливого критика. В статье находит выражение терзающий Томсона конфликт между Карно и Джоулем. Не в силах разрешить его, он сталкивает стороны в одном тексте, тем самым позволяя другим присоединиться к дискуссии.

В 1849 году Томсон опубликовал свою статью о Карно и возникших у него сомнениях. Через несколько месяцев неожиданно открылись новые факты, которые, на первый взгляд, говорили в пользу Карно, а не Джоуля. Их представил старший брат Уильяма Джеймс, который разработал хитроумный способ проверить идеи Карно. Джеймс задумался, сможет ли предложить такую конструкцию двигателя, которая опровергнет гипотезу Карно о том, что для выработки движущей силы температура рабочего вещества в машине должна падать. Если такой контрпример для универсального, по мнению Карно, принципа действительно найдется, то вся теория окажется под угрозой. Но что, если контрпример, наоборот, поддержит ее?

Джеймс Томсон знал, что любое расширяющееся вещество теоретически может толкать поршень, таким образом совершая работу. Он также знал, что вода расширяется при замерзании. Почему бы не сконструировать двигатель с таким принципом действия? Томсон представил конструкцию с поршнем и цилиндром, аналогичную той, что использовалась в паровых машинах. Пространство под поршнем было заполнено водой, которая охлаждалась до 0 °C. Достигая этой температуры – и не раньше, – вода превращалась в лед, расширялась и толкала поршень. Главное, что в этой системе поршень приводился в движение при неизменно нулевой температуре. Казалось, что работа производится без падения температуры. Мог ли такой контрпример опровергнуть теорию Карно?

Не обязательно. Дело в том, что, когда вода замерзает, расширяется и толкает поршень, этот поршень, в свою очередь, толкает лед. Это следствие закона, который гласит, что всякому действию всегда есть равное и противоположно направленное противодействие. Представьте, что вы находитесь в цилиндре и толкаете поршень руками. В такой ситуации вы будете чувствовать, как сопротивление поршня, давящего на ваши руки, растет. Подобным образом в гипотетической ледяной машине Джеймса Томсона оказываемое поршнем давление растет по мере замерзания воды.

Во времена Томсона было известно, что вода замерзает при 0 °C на поверхности земли, где на нее оказывает давление лишь атмосфера планеты. (Ученые называют это давлением в “одну атмосферу”.) Однако никто не знал, изменяется ли температура замерзания воды при более высоком давлении. Если бы в таком случае лед формировался при температуре ниже 0 °C, то теория Карно была бы спасена, ведь в ходе превращения воды в лед и получения работы температура опускалась бы с 0 °C до отметки, соответствующей температуре замерзания воды под давлением поршня.

Джеймс Томсон вычислил величину, на которую должна опускаться температура замерзания воды при возрастании давления, чтобы теория оставалась состоятельной. Он выяснил, что при повышении давления на одну атмосферу температура замерзания должна опускаться на 0,0075 °C. Таким образом, при давлении в две атмосферы вода должна замерзать при температуре -0,0075 °C; при давлении в три атмосферы – при -0,0150 °C и так далее.

Прочитав эти выкладки, Уильям Томсон возликовал. Теперь у него появился способ проверить теорию Карно в своей лаборатории в Университете Глазго. Если в ходе экспериментов выяснится, что под давлением температура замерзания воды действительно опускается на величину, предсказанную его братом, то это станет доказательством состоятельности теории Карно.

Само собой, на практике такой эксперимент был сопряжен с огромными сложностями – и не в последнюю очередь потому, что расчетное снижение температуры было крошечным и доступные в то время термометры не могли его зафиксировать. В конце 1849 года Уильям Томсон поручил одному из своих студентов, Роберту Манселлу, создать чувствительный термометр, способный показывать изменения температуры на менее чем одну сотую градуса Цельсия. Прежде чем поступить в Университет Глазго, Манселл учился практической инженерии и имел опыт стекольных работ. Он приложил немало усилий, но все же откалибровал термометр таким образом, чтобы Томсон счел его показания заслуживающими доверия. Затем Томсон наполнил стеклянный цилиндр водой, которую мог сдавливать поршнем. С помощью этой экспериментальной установки он определил температуру, при которой вода замерзала под разным давлением.

К огромному удовлетворению Уильяма Томсона результаты подтвердили правильность расчетов его брата, а следовательно, и состоятельность теории Карно. Джеймс Томсон предсказывал, что под давлением, которое в 8,1 раза выше атмосферного давления на уровне моря, вода замерзнет при температуре -0,061 °C. Измерения Уильяма Томсона дали результат -0,059 °C: расхождение оказалось крошечным. При давлении, которое в 16,8 раза выше атмосферного давления на уровне моря, в теории вода должна была замерзнуть при температуре -0,126 °C. Измерения Томсона показали -0,129 °C, снова дав лишь минимальное расхождение.

В представлении Томсона эксперимент стал убедительным аргументом в пользу теории Карно. И все же нам, людям XXI века, Томсон, как и Джоуль, кажется чересчур легковерным. Два результата наблюдений, которые, как признавал сам Томсон, могли объясняться случайным совпадением, доказывали немногое. Они удовлетворяли его скорее на эмоциональном, чем на логическом уровне. Он был влюблен в изящный анализ Карно о получении движущей силы из теплоты и считал результаты своих экспериментов подтверждением того, во что верил сердцем.

Братья Томсоны, сами того не зная, также объяснили, как движутся ледники. Давление на лед в нижней части ледника так велико, что он тает, хотя температура там составляет 0 °C и ниже. Таким образом под ледником возникает слой воды, который позволяет ему скользить вниз. Любопытно, что к объяснению движения ледников привели размышления Сади Карно о работе паровых машин.

* * *

Впрочем, Томсон понимал, что эксперимент со льдом давал аргументы в пользу Карно, не опровергая при этом выводы Джоуля. Критика теории теплорода, изложенная последним, оставалась состоятельной. Томсон не мог от нее отмахнуться. Кроме того, работа Джоуля усугубила другое сомнение Томсона насчет теории, которое заключалось в следующем.

Хотя при движении из горячей зоны в холодную тепловой поток может производить работу, это происходит не всегда. Возьмем, например, железный стержень, докрасна раскаленный с одной стороны и холодный с другой. Со временем теплота перемещается по стержню от горячего конца к холодному, выравнивая температуру. Томсон задумался: что происходит с работой, которую она могла бы производить? Если теплота представляет собой не поддающийся уничтожению флюид – теплород, – то железный стержень с разностью температур аналогичен ведру воды, стоящему в верхней части наклонного канала. Стоит наклонить ведро, и вода потечет по каналу, как тепло в железном стержне перетекает от горячего конца к холодному. Но представьте, что посередине канала установлено лопастное колесо. Достигнув этого места, вода поворачивает колесо и поднимает груз. Поскольку часть движения воды передается колесу, скорость потока снижается. Когда вода достигает конца канала, раздается всплеск. Уберите колесо – и вода потечет по каналу без препятствий и достигнет его конца с более громким всплеском. Сила, которую вода могла бы передать колесу, превращается в звук. И здесь Томсон видел проблему. Когда теплород без препятствий перемещается по железному стержню от горячего конца к холодному, не раздается ни всплеска, ни другого похожего звука. Что же происходит с силой, которую он мог бы создать? Ответа у Томсона не было.

Джоуль, в свою очередь, понял, что, несмотря на все недостатки теории теплорода, вывод Карно о том, что теплота может производить работу только при перемещении от нагревателя к охладителю, отрицать нельзя. В марте 1850 года он написал Томсону: “Должно быть какое-то связующее звено между результатами, которые я получил, и расчетами на основе теории Карно. Возможно, вы вскоре его обнаружите. Меня лично этот вопрос весьма озадачивает”.

Карно и Джоуль были двумя кусочками одной мозаики. Однако, несмотря на все усилия, ни Томсон, ни кто-либо другой не мог понять, как объединить их теории. Для этого потребовались таланты и труды новой и весьма амбициозной нации.

Глава 5
Главная задача физики

Богам любопытно наблюдать, как мускулы работают подобно цилиндру паровой машины.

Физиолог Эмиль Дюбуа-Реймон, живший в Берлине

На юго-западе Берлина, где немецкая столица граничит с Потсдамом, река Хафель распадается на систему взаимосвязанных озер, каналов и протоков. На их берегах расположены парки, сады и дворцы, которые в первой половине XIX века служили местом отдыха и развлечений королевской династии Гогенцоллернов. В то время Гогенцоллерны правили Пруссией, занимавшей северо-восточную четверть современной Германии.

Один из увеселительных садов, Глиникский парк, напоминал английский ландшафтный сад с фонтанами, оранжереями и роскошными клумбами. Посетив парк, Хельмут фон Мольтке назвал его “одним из самых красивых в Германии”.

Если пройти по стопам фон Мольтке сегодня, вашему взору в основном предстанут те же достопримечательности. Но некоторые все же не сохранились: например, больше нет намеренно полуразрушенного пешеходного мостика, под которым стремился мощный поток воды. В нескольких метрах от него был слышен странный звук, теперь давно забытый: настойчивое бряцание и пыхтение, доносившееся с виллы, напоминающей постройки средневековой Флоренции. Внутри стояла одна из первых в Пруссии паровых машин, сконструированная инженером, прошедшим обучение в Англии.

Фон Мольтке написал, что эта машина “работает с утра до ночи, поднимая воду Хафеля на песчаные высоты, чтобы луга зеленели там, где без машины выживал бы только вереск. Могучий водопад с ревом срывается с утесов под аркой полуразрушенного моста, словно смытого неистовым потоком, и падает на пятьдесят футов вниз, в Хафель, на землю, где бережливая Мать Природа и не подумала бы пролить ни ведра воды”. Иными словами, это был искусственный ландшафт, который стал красивым под действием машин.

В Великобритании паровую энергию считали путем к коммерческой выгоде, во Франции – к общественному прогрессу, но в Пруссии – во всяком случае, в элитных кругах – ее считали способом совершенствовать природу. Здесь паровая энергия была связана с природой в буквальном смысле, и именно здесь ученые раньше всех поняли, что ее уроки применимы не только к машинам. В конце концов, раз паровая машина способна улучшить природу, может, она способна и объяснить ее? Молодой человек, наблюдавший за установкой паровой машины в Глиникском парке и двух других машин в соседних садах, стал одним из первых ученых, разглядевших их значимость.

Герман Гельмгольц родился в 1821 году в Потсдаме в семье среднего достатка – его отец работал учителем в гимназии, прусской средней школе, где акцент делался на академическом, а не практическом образовании. Гельмгольц вспоминал, что в детстве часто болел и много времени проводил в своей комнате, часто прикованный к постели. Однако, когда он подрос и окреп, отец стал знакомить его с поэзией и прозой и гулять с ним в потсдамских садах и парках. В это время Гельмгольц увлекся математикой и естествознанием и принялся осваивать науки, проглатывая учебники по физике и конструируя самодельные микроскопы из линз от старых очков. С возрастом уверенность Гельмгольца в своих интеллектуальных силах росла, и в 1838 году он получил стипендию для изучения медицины в берлинском Университете

Фридриха Вильгельма, который специализировался на подготовке военных врачей. Также в 1838 году в Пруссии была открыта первая железная дорога на паровой тяге, соединившая Потсдам и Берлин. Таким образом, юный Гельмгольц не только наблюдал, как паровая энергия применяется для совершенствования природы в местном парке, но и сам пользовался ею, когда ездил в университет.

* * *

В конце 1830-х и начале 1840-х годов немецкоязычная часть Европы представляла собой лоскутное одеяло из королевств, эрцгерцогств, епископств, княжеств и других суверенных территорий. В экономическом отношении регион отставал от Великобритании и Франции, и паровая технология в нем развивалась медленнее. В 1840 году мощность установленных на местных заводах паровых машин составляла всего 20 тысяч лошадиных сил, что было гораздо меньше, чем в Великобритании (350 тысяч) и Франции (34 тысячи).

 

Однако в 1840-х годах начали приносить свои плоды реформы, проведенные в прошлые десятилетия. В 1807 году Пруссия отменила крепостное право и позволила крестьянам жить и работать где угодно, что привело к формированию многочисленного и мобильного рабочего класса. Кроме того, в 1834 году коалиция немецких государств создала таможенный союз. Ранее, чтобы доехать из Гамбурга на севере до Альп на юге, приходилось пересекать десяток стран и на каждой границе общаться с “неприязненными таможенниками и сборщиками налогов”. Теперь, когда эта система осталась в прошлом, развитие текстильной, горной и сталелитейной промышленности ускорилось. В 1840–1860 годах мощность установленных на заводах машин возросла в 10 раз, а протяженность железных дорог к 1869 году составила более 16 тысяч километров.

Параллельно шло становление серьезно перестроенной и лучше финансируемой немецкой системы образования. В первой половине XIX века прусское правительство пятикратно увеличило расходы на содержание университетов и переосмыслило их назначение. Они перестали быть учреждениями, где студентов с ложечки кормили имеющимися знаниями, и превратились в заведения, где знания должны были умножаться. Одной эрудиции отныне было недостаточно: преподавателям полагалось проводить исследования, демонстрируя творческий подход к делу.

В таком обществе рос Герман Гельмгольц. Пользуясь всеми его преимуществами, он завел долгую дружбу с другими амбициозными молодыми врачами, физиками и химиками. Сложившаяся группа единомышленников поставила перед собой задачу согласовать изучение живых организмов с текущими исследованиями неживого мира. Выражаясь современным языком, ученые хотели показать, что живые организмы подчиняются тем же математическим, физическим и химическим законам, которые управляют всем остальным. Однако такой подход привел к конфликту группы Гельмгольца с существенной частью европейского научного сообщества, полагавшей, что подобный синтез живого и неживого миров не представляется возможным. Многие ученые в то время верили в состоятельность витализма – идеи, что живые организмы не только получают питательные вещества из пищи, воды, воздуха и так далее, но и обладают “жизненной силой”. Пока организм жив, эта жизненная сила контролирует происходящие в нем физические и химические процессы. После смерти жизненная сила исчезает, и организм разлагается, словно неживой. Гельмгольц и его друзья выступали против “виталистического” представления о мире и считали, что очень важно опровергнуть его, чтобы поставить биологию на один фундамент с физикой и химией.

В 1843 году Гельмгольц окончил медицинский факультет и занял должность ассистента хирурга в гусарском полку в Потсдаме. Хотя в армии он приступал к своим служебным обязанностям в пять утра, когда трубач трубил побудку, Гельмгольц не прерывал свои научные занятия. Он за свой счет организовал в казармах небольшую лабораторию и начал серию экспериментов для проверки состоятельности теории витализма. Особенный интерес для Гельмгольца представляли новые исследования источников животного тепла, которые в то время вызывали ожесточенные споры.

Противники витализма полагали, что если им удастся доказать, что процесс выработки тепла у теплокровных животных напоминает медленное горение, не имеющее принципиальных отличий от горения угля, то витализму будет нанесен серьезный удар.

Эту гипотезу еще в 1780-х годах выдвинул великий французский химик Антуан Лавуазье, который представлял легкие как торпидную[4] печь для сжигания пищи: “Дыхание, таким образом, есть горение, пусть и очень медленное, но все же совершенно аналогичное горению древесного угля”. Иными словами, пища была топливом, которое животные сжигали в кислороде, тем самым вырабатывая тепло при выделении углекислого газа как побочного продукта этого горения.

Однако в последующие годы ученые поняли, что на самом деле процесс гораздо сложнее. Пища не похожа на древесный уголь, который полностью состоит из углерода. Например, сахар и другие углеводы – это сложные молекулы, содержащие в дополнение к атомам углерода атомы водорода и кислорода. Следовательно, животное тепло может вырабатываться не только при сжигании углерода, но и при сжигании водорода. В ходе него также выделяется теплота, а конечным продуктом становится вода (Н2О). Наблюдения показывают, что животные выдыхают углекислый газ и выделяют воду, и это говорит в пользу изложенной теории.

Держа это в уме, двое ученых, бельгиец Сезар-Мансюэт Депре и француз Пьер Луи Дюлонг, исследовали предположение Лавуазье о том, что дыхание представляет собой особую форму замедленного горения. Работая по отдельности в 1820-х годах, они помещали кроликов, морских свинок, голубей, петухов, сов, сорок, кошек и собак в медные ящики, которые погружали в резервуар с водой. Это позволяло ученым измерять, сколько кислорода животное вдыхает за определенный период времени. Затем они оценивали, какая доля вдыхаемого кислорода связывается с углеродом и образует углекислый газ, а какая связывается с водородом и образует воду. После этого – измеряли, насколько повысилась температура воды в резервуаре. Далее – сжигали углерод и водород в кислороде, чтобы получить тот же объем углекислого газа и воды, который выдохнуло и выделило животное. Наконец, ученые измеряли количество теплоты, выделившейся в ходе этого процесса.

Оба ученых увидели, что при простом сжигании углерода и водорода в кислороде выделялось примерно на 10 % меньше теплоты, чем когда такое же количество углекислого газа и воды производили животные.

Это наблюдение соответствовало виталистическим представлениям о том, что у животных должен быть еще один источник тепла, который не подчиняется физическим и химическим законам, управляющим неживой природой. Следивший за дебатами из воинской части в Потсдаме Гельмгольц скептически отнесся к такому выводу. Он решил, что изучит животное тепло сам.

Гельмгольц выдвинул три аргумента против Дюлонга и Депре. Во-первых, он заявил, что их эксперименты основаны на неверных предположениях. Ученые измеряли количество теплоты, выделяемой при сжигании углерода и водорода в кислороде. Гельмгольц отметил, что содержащиеся в пище молекулы углеводов при сжигании выделяют большее количество теплоты, чем углерод и водород. Это объясняется тем, что в молекулах углеводов, помимо углерода и водорода, содержится некоторое количество атомов кислорода. В связи с этим при дыхании животные не просто связывают углерод и водород с кислородом из атмосферы, но и получают дополнительный приток кислорода из пищи. С учетом этого разница в количестве теплоты, выделяемой животными и выделяемой при горении, исчезает.

Во-вторых, Гельмгольц применил свои медицинские знания. Он провел несколько искусных экспериментов на лягушачьих лапках, чтобы попытаться доказать, что мышечное движение объясняется обычными химическими процессами, а не присутствием жизненной силы. Если говорить простым языком, Гельмгольц погружал лягушачьи лапки сначала в воду, а затем в спирт и измерял количество вещества, которое выделялось из них и растворялось в жидкостях. Затем он пропускал электрический ток по лапкам других лягушек, еще не погружавшихся в жидкости, и от этого их мышцы сокращались. После этого Гельмгольц помещал лапки, по которым прошел электроток, в воду и спирт и измерял количество выделяемого вещества. Он заметил, что сокращение мышц приводило к уменьшению количества вещества, растворяемого в воде, и это уменьшение точно уравновешивалось увеличением количества вещества, растворяемого в спирте. Иными словами, движение мышц сопровождалось преобразованием растворимого в воде вещества в вещество, растворимое в спирте. Было ясно: мышечное движение обеспечивалось химической энергией, выделяемой при преобразовании одного вещества в другое, что опять же принципиально не отличалось от процесса горения.

3Кайно? Я не слышал об этом авторе (фр.).
4Торпидный — очень медленно горящий.
Купите 3 книги одновременно и выберите четвёртую в подарок!

Чтобы воспользоваться акцией, добавьте нужные книги в корзину. Сделать это можно на странице каждой книги, либо в общем списке:

  1. Нажмите на многоточие
    рядом с книгой
  2. Выберите пункт
    «Добавить в корзину»