Взламывая анатомию

Текст
Читать фрагмент
Отметить прочитанной
Как читать книгу после покупки
Шрифт:Меньше АаБольше Аа

Костные клетки

Самые твердые клетки располагаются в костном отделе, который постоянно обновляется и перестраивается. Эту работу делят три типа клеток. Остеобласты создают основу (матрикс) для формирования кости. Некоторые остеобласты «дорастают» до клеток остеоцитов, которые в буквальном смысле врастают в создаваемую ими субстанцию. Остеоциты – самый распространенный тип костных клеток. Они образуют большую часть кости, а также помогают в ее координации и перестройке, особенно при стрессе. Остеокласты, наоборот, реабсорбируют костный материал для высвобождения необходимых минералов (например, кальция) из матрикса или после периодов бездействия.

Стволовые клетки

Существует особый тип клеток, который выделяется среди других своими скрытыми регенеративными способностями. Стволовые клетки могут самообновляться и создавать клетки любого типа. В нескольких тканях и органах эти клетки терпеливо ждут своей активации.

Стволовые клетки, в отличие от большинства типов, не дифференцированы. Это означает, что они не являются специализированными и не выполняют каких-либо строго обозначенных ролей или функций. Получив зеленый свет для начала деления, стволовая клетка дает потомство – по одной специализированной и недифференцированной клетке.

Эмбриональные стволовые клетки

По источнику происхождения стволовые клетки делятся на два основных типа. Эмбриональные стволовые клетки присутствуют только у очень молодых эмбрионов, называемых бластоцистами. Они могут естественным образом превращаться в клетки любого типа, поэтому их назвали плюрипотентными.

Эмбриональные стволовые клетки образуются из внутренней клеточной массы бластоциста – области, которая развивается в плод. Трофобласт превращается в плаценту.


Зрелые стволовые клетки

Зрелые (или дифференцированные) стволовые клетки присутствуют почти во всех тканях взрослого человека. До недавнего времени считалось, что такие клетки способны создавать лишь ограниченное количество клеточных типов – в зависимости от расположения в ткани. Однако исследования доказали, что эти «многоцелевые» клетки не так ограничены, как нам казалось. И действительно: теперь исследователи научились химически стимулировать стволовые клетки из различных тканей, запуская преобразование в любые клеточные типы. Кроме того, ученые научились перепрограммировать, или индуцировать, «обычные» (не стволовые) взрослые клетки с уже оформленной дифференциацией или специализацией в структуры с плюрипотентными свойствами.

Трансформационный потенциал этих возможностей в регенеративной медицине просто огромен. Он не только позволит обойти этическую дилемму при использовании человеческих эмбрионов для сбора плюрипотентных клеток, но и станет панацеей в борьбе с отторжением трансплантатов со стороны иммунной системы.

На этой растрово-электронной микроскопии (РЭМ) изображена стволовая клетка костного мозга. Такие клетки, известные как зрелые, или соматические, встречаются и у детей, и у взрослых.


Квартет тканей

Наши клетки, как и сам зародыш, проходят через определенные этапы дифференциации, необходимые для того, чтобы в дальнейшем сформировать четыре типа тканей. Эти типы возникли эволюционным путем, когда специализированные клетки «узнали» друг о друге и стали объединяться в четко выраженные колонии эпителиальных, мышечных, соединительных и нервных клеток.

Соединительная ткань

Если стволовые клетки являются по отношению к другим типам мультипотентными, то клетки соединительной ткани считаются убиквитарными – потому что они есть повсюду. Соединительную ткань в организме можно найти везде. Эти клетки образуют костную и жировую ткань, хрящи, сухожилия, связки и даже кровь, поскольку имеют общее эмбриональное происхождение (они происходят из мезодермы, или среднего зародышевого листка). Как следует из названия, клетки данного типа соединяют различные части тела с помощью матрикса определенной консистенции (от жидкой до твердой или волокнистой), который прикрепляется к своим клеткам-создателям. Соединительная, или поддерживающая, ткань связывает различные ткани внутри органов, амортизирует чувствительные структуры, сохраняет энергию и держит форму.

Мышечная ткань

Клеточный компонент мышечной ткани – это мышечное волокно, названное так из-за вытянутой формы клеток. Ядра мышечных клеток располагаются по краю клеточной мембраны, благодаря чему остается больше места для тысяч мышечных нитей (миофиламентов). Миофиламенты располагаются внахлест, как переплетенные пальцы, и скользят по поверхности друг друга, отвечая за сокращение мышц и укорачивание клетки. Подробнее о структуре мышц см. параграф «Архитектура мышц», стр. 96–97.

Нервная ткань

Нервная ткань – основная в нервной системе. Она нужна для выработки и проведения электрических импульсов, благодаря которым осуществляется движение и/или выделение физиологических жидкостей. Основной единицей нервной ткани считается нейрон, или нервная клетка, который связывается с другими с помощью специфических соединений – синапсов. Нейронам помогают глиальные клетки: они поставляют питательные вещества и участвуют в проведении нервных импульсов. Подробнее см. параграф «Нейроны» на стр. 190–191.

Эпителиальная ткань

Эпителиальная ткань встречается в пограничных областях: коже, слизистой оболочке пищеварительной системы и глазах. Она также выстилает поверхность внутренних органов и дыхательных путей, носа, рта и легких. Эта ткань присутствует в различных формах – от однослойных плоских или кубических клеток до сложных многослойных видов. Эпителиальные клетки создают барьер между органами и инвазивными веществами или микроорганизмами. В этом деле им помогает один слой клеток и базальная мембрана, которая прикрепляет эпителий к остальным частям тела и регулирует все, что попадает внутрь. В модифицированной эпителиальной ткани присутствуют специальные секреторные железы, помогающие носу вырабатывать слизь, желудку – выделять пищеварительные ферменты, а коже – производить пот и себум (кожное сало).

Эпителиальные клетки, которые выстилают стенки кишечника, называются слизистой оболочкой, или мукозой.


Подсчет органов

В нашем теле можно насчитать от 78 до 79 различных органов. Эта неточность объясняется тем, что четкое определение понятия «орган» отсутствует. Но однозначно ясно, что орган представляет собой сочетание слаженно работающих тканей, выполняющих определенную функцию в организме.

Говоря об органах, подавляющее большинство людей вспоминает лишь пять известных представителей: мозг, сердце, почки, печень и легкие. Однако в одной только мочевыделительной системе, кроме почек, есть еще три важных органа: мочевой пузырь, мочеточник и мочеиспускательный канал. Самым крупным внутренним, или висцеральным, органом в нашем теле считается печень. Печень среднестатистического человека весит 1,8 кг. Но в номинации «самый тяжелый орган» все-таки побеждает кожа с весом в 2,7 кг.

Мозг, достойный собственного чемпионского звания, является самым энергозатратным органом, потребляющим порядка 20 % от всей генерируемой энергии. Мозг стал домом и для самого маленького органа – шишковидной железы. Она вырабатывает гормон мелатонин, помогающий нам заснуть.

Системы органов

С классификацией систем органов ситуация обстоит так же, как и с подсчетом точного количества органов в организме. Эта книга познакомит вас с 10 системами органов:

• покровной; • опорно-двигательной;

• сердечно-сосудистой; • лимфатической;

• дыхательной; • нервной;

• эндокринной; • пищеварительной;

• половой.

Некоторые эксперты считают, что иммунная система не входит в состав лимфатической, а мышечная относится к скелетной. Другие же объединяют лимфатическую, иммунную и сердечно-сосудистую в одну – кровеносную. Абстрагируясь от подобных вариантов, стоит помнить, что системы органов не работают изолированно: в разных системах есть множество перекликающихся функций, из-за чего точность классификации отходит на второй план.


Внутренний баланс

Наши системы органов отвечают за поддержание двух взаимосвязанных процессов: метаболизма и гомеостаза. Метаболизм не сводится к скорости, с которой мы перерабатываем пищу, чтобы производить энергию. Метаболизм представляет собой сумму всех химических реакций, происходящих внутри организма. Гомеостаз – это способ, которым организм достигает постоянства внутреннего состояния, вне зависимости от внешних условий.

Метаболизм

Метаболизм – это больше, чем деление пищи на составные элементы (белки, углеводы и сахара) в процессе, который называют катаболизмом. К метаболизму относится и обратный процесс – анаболизм. Он описывает, как именно организм использует молекулы меньшего размера (амино- и жирные кислоты) для создания более сложных молекул, способных накапливаться в виде энергии или использоваться для различных целей – от роста до борьбы с инфекциями. Скорость данных процессов зависит от различных факторов, включая возраст, пол и наследственность.


Форма активного участка фермента уникальна (напоминает замок). Реакция может происходить, только когда субстрат (ключ) подходит к ферменту (замку). В результате продукты могут соединяться или расщепляться.

 

К эффекторам метаболизма иногда относят ферменты, потому что они являются биологическими катализаторами, ускоряющими химические реакции в клетке. Катализировать реакции этим белкам позволяет их особая шаровидная структура. В ферментах присутствуют щели (или активные центры), в которые попадают «правильные» молекулы (субстраты). Затем эти вещества распадаются (разлагаются) на две составляющие либо соединяются, образуя более крупную молекулу. Ферменты легко узнать по названию – все они пишутся с суффиксом «-аза» (например, полимераза, амилаза и дегидрогеназа). Большинство ферментов находится внутри клетки. Наличие ферментов в крови может указывать на возможное повреждение тканей. Например, лактатдегидрогеназа (ЛДГ) обычно присутствует в клетках печени и сердца, поэтому повышение ее уровня в крови говорит о возможных повреждениях данных органов. Объем вырабатываемых ферментов строго ограничен – во избежание любой реакции (слишком быстрой или медленной), способной пошатнуть баланс веществ в организме и в конечном счете повлиять на гомеостаз.

Гомеостаз

Гомеостаз – это динамический и автоматический процесс, направленный на достижение внутреннего физиологического покоя. Гомеостаз во многом зависит от обратной связи со стороны различных систем органов, в частности – от нервной и эндокринной систем. Благодаря циклу отрицательной обратной связи наш организм способен управлять реакциями и минимизировать любые дисбалансы. Ведь иначе подобные реакции могут привести к болезни и, в худшем случае, к смерти.

Гомеостаз в действии

Несколько систем органов отвечает за регуляцию водного обмена в организме. При обезвоживании объем воды в крови падает. Тогда особая мозговая структура – гипоталамус – замечает изменение в состоянии и подает сигнал, который мы воспринимаем как жажду. Далее гипоталамус начинает выделять гормоны, которые заставляют почки экономить воду. Мы пьем воду до тех пор, пока ее уровень в крови не восстановится. После этого гипоталамус регистрирует это новое состояние и начинает постепенно снижать уровень гормонов, посылаемых в почки.

Когда клетки умирают

Главной особенностью всех живых существ, будь то одноклеточные или многоклеточные, является их гарантированная смерть. Это довольно парадоксальная черта, ведь, с одной стороны, она определяет, что такое быть живым, а с другой – лишний раз подчеркивает факт неизбежной гибели. На клеточном уровне смерть – примечательное событие. Сигнальные пути, отвечающие за эту важную процедуру, так же сложны и разнообразны, как и сама жизнь.

Для одноклеточного организма гибель клетки – это рок, обрывающий жизнь. Но у многоклеточных организмов, как мы знаем с начала XX века, смерть клеток играет важную роль в нормальном процессе развития. Исторически мы привыкли рассматривать смерть клетки в зрелом организме как некоего врага жизни, проводя аналогию с часами, замедляющими свой ход из-за пагубных влияний среды. Эта точка зрения потеряла свою актуальность: теперь мы понимаем, что многие травмы, вызванные внешними агентами, способны запускать суицидальную программу и активировать процедуру по избавлению от поврежденных клеток. С адаптационной точки зрения данный процесс является оптимальным решением.

С начала 1990-х годов в понимании механизмов клеточной гибели произошел радикальный сдвиг. В результате было выделено два явных сценария: случайная и запрограммированная гибель.


Недостаток кислорода или питательных веществ (или воздействие токсических веществ) может привести к гибели клеток печени из-за некроза. Обратите внимание на их бледную цитоплазму, потерю ядра, тканевую структуру и очаги воспалительных клеток (черные точки).


При некрозе клетки теряют способность управлять транспортом веществ внутри себя. Клетки и органеллы набухают, а затем лопаются, выбрасывая содержимое во внеклеточную жидкость.

Случайная гибель клетки: некроз

Случайная гибель клеток происходит неожиданно и не имеет четко выраженной цели. Она пагубна для всего организма. Такой сценарий иногда называют патологической гибелью клеток, или некрозом (от греч. nekros – мертвый). Некрозные клетки почти всегда отмирают вследствие острой или тяжелой травмы, вызванной:

• экстремальными изменениями в водно-электролитном балансе (электролиты – это соли и минералы);

• внезапной и продолжительной нехваткой питательных веществ;

• резким недостатком кислорода (аноксия);

• сильнейшими физическими и химическими травмами из-за интенсивного воздействия тепла, токсичных веществ или давления.

Некроз используют для описания всех изменений, через которые клетки и ткани проходят в процессе гибели. Клетки и органеллы не могут контролировать собственный объем и начинают набухать. В результате они лопаются и изливают свое содержимое на близлежащие области. Это очень грязный процесс, вызывающий локальную воспалительную реакцию.

Запрограммированная гибель клетки: апоптоз

В отличие от некроза, запрограммированная гибель клеток (PCD – от англ. programmed cell death) представляет собой планируемый или регулируемый сценарий гибели. PCD – это строго регламентированная процедура, происходящая в развитии организма по плану. Естественная, или «физиологическая», гибель клеток может происходить в определенных тканях на отдельных этапах развития либо затрагивать весь жизненный цикл (например, при обновлении иммунных клеток). PCD удаляет нежелательные и потенциально опасные клетки. Таким образом, PCD может возникать из-за различных стимулов, однако сам механизм гибели клеток подчинен определенному процессу под названием «апоптоз».


На этом рисунке показаны основные стадии апоптоза. Митохондрии сохраняются в клетке до самых поздних стадий, так как апоптоз является энергетически затратным процессом.


Понятие «апоптоз» происходит от греческого слова, обозначающего «листопад». Этот термин ввели патологоанатом Эндрю Уилли и его коллеги в 1971 году. Апоптоз – это «встроенная» программа гибели внутри клеток, эффективный и чистый способ избавления от нежелательных и умирающих клеток. Несмотря на то что термины «PCD» и «апоптоз» часто используются как синонимы, бывают случаи, когда PCD не является апоптозом. Например, клетки, выстилающие матку, запрограммированы на гибель к началу менструации, но по факту они погибают от некроза в результате недостаточного кровоснабжения.

В отличие от некротических клеток, на апоптозные действует ряд белков, которые называются каспазами. Апоптозные клетки не разбухают, а, наоборот, сжимаются и со временем распадаются на мембранно-связанные везикулы (апоптозные тельца). На поверхности этих везикул располагаются специальные маркеры, которые привлекают белые кровяные тельца (фагоциты), поглощающие клетки. Клеточные компоненты оборачиваются защитной протеиновой оболочкой, благодаря чему в апоптозе, в отличие от некроза, нет «утечки» потенциально вредных субстратов.

Темная сторона апоптоза

Апоптоз отвечает за поддержание нормального тканевого баланса, но в то же время связан и с рядом заболеваний. Следовательно, у апоптоза, как и у некроза, есть своя темная сторона.

Слишком слабый апоптоз (в клетке с аномальной устойчивостью к апоптозу) вызывает следующее.

Врожденные дефекты.

Лишние клетки не отмирают.

Аутоиммунные заболевания.

Накапливаются аутоиммунные реактивные клетки.

Рак.

Клетки с поврежденными генами, управляющими ростом, не умирают и продолжают расти.

Чрезмерный апоптоз (когда апоптоз активируется в клетке, в которой его быть не должно) может иметь следующие последствия.

Синдром приобретенного иммунодефицита (СПИД).

Белые кровяные тельца (Т-клетки) начинают погибать после заражения вирусом иммунодефицита человека (ВИЧ). Подробнее см. «Иммунодефицит» на стр. 163.

Дегенеративные заболевания нервной системы.

Начинают гибнуть нейроны, что ведет к ухудшению работы мозга. Подробнее см. параграф «Нейроны» на стр. 190–191.

Инсульт.

Временный недостаток кислорода в клетках головного мозга приводит к их гибели от апоптоза.

Глава 3
Идеальная обертка

Покровная система

Известная компания по уходу за кожей говорит нам: «Любите кожу, в которой вы живете». И это справедливо, ведь кожа у нас одна. Хотя на самом деле кожа обновляется чуть ли не каждый месяц, но меняется только ее поверхностный слой…

Кожа относится к покровной системе. Кожа и ее производные формируют покровный слой, или интегумент (от лат. integumentum – покрытие). Кожа не только покрывает всю поверхность тела, но и выстилает ротовую полость, а также анальный канал. Так почему же мы должны любить свою кожу? Вот несколько причин:

• это самая заметная часть тела, влияющая на внешний вид;

• кожа бывает разных оттенков;

• это основной барьер между нами и внешним миром – кожа является первой линией защиты от вредных химических веществ и микробов;

• кожа помогает контролировать температуру тела;

• под действием солнца она вырабатывает важнейший укрепитель костей – витамин D;

• кожа эластична, но прочна, непроницаема, но не позволяет организму высыхать;

• кожа передает сенсорную информацию об окружающей среде;

• она помогает защитить нас от ультрафиолетового излучения.

Что здесь можно не любить? Конечно же, кожа заслуживает должного внимания. В отличие от многих герметичных оболочек, кожа представляет собой необычайно активный и разноплановый, дышащий и секреторный орган. Кроме того, она весьма скрупулезно следит за всем, что попадает внутрь. Например, если бы мы были жирорастворимым химическим веществом и отчаянно пытались пройти фейсконтроль в клуб под названием «организм», то нам стоило бы обходить стороной ступни, чтобы на входе не прождать слишком долго. Быстрее всего мы пройдем фейсконтроль в мошонке. Так что, если нам вдруг захочется поскорее попасть в организм, заходить лучше оттуда.


Кожный покров состоит из трех слоев: эпидермиса, дермы и нижнего слоя – гиподермы.


Купите 3 книги одновременно и выберите четвёртую в подарок!

Чтобы воспользоваться акцией, добавьте нужные книги в корзину. Сделать это можно на странице каждой книги, либо в общем списке:

  1. Нажмите на многоточие
    рядом с книгой
  2. Выберите пункт
    «Добавить в корзину»