Искра жизни. Электричество в теле человека

Текст
6
Отзывы
Читать фрагмент
Отметить прочитанной
Как читать книгу после покупки
Нет времени читать книгу?
Слушать фрагмент
Искра жизни. Электричество в теле человека
Искра жизни. Электричество в теле человека
− 20%
Купите электронную и аудиокнигу со скидкой 20%
Купить комплект за 848  678,40 
Искра жизни. Электричество в теле человека
Искра жизни. Электричество в теле человека
Аудиокнига
Читает Наталия Казначеева
499 
Подробнее
Шрифт:Меньше АаБольше Аа

Пока не увидишь – не поверишь

Учитывая важность ионных каналов, может показаться странным, что об их существовании даже не подозревали до середины прошлого столетия, а еще в начале 1970-х гг. идея о том, что ионы проходят через мембрану сквозь специализированные белковые поры, была не более чем предположением. Для прямой демонстрации их существования нужно было измерить ток, который течет через отдельный канал, когда он открыт. Сделать это было непросто, поскольку такой ток чрезвычайно мал и для измерений требовалось высокоспециализированная электронная аппаратура. Чтобы понять, насколько ток, текущий через отдельно взятый ионный канал, ничтожен, представьте себе, что он составляет примерно триллионную часть того тока, который питает ваш электрочайник, – всего несколько пикоампер.

Слева: здесь показано, как при использовании метода локальной фиксации потенциала стеклянный электрод изолирует отдельный канал на участке клеточной мембраны и позволяет измерять ничтожные токи, которые текут через канал, когда он открыт. Справа: график тока в отдельном канале (сверху). Когда канал открывается (снизу), ток, создаваемый движущимися через него ионами, отображается как смещенная вниз линия. Канал, показанный ниже, закрывается, когда к нему присоединяется внутриклеточная АТФ, и открывается, когда АТФ отсоединяется.


Проблема была решена с помощью оригинальной методики, разработанной двумя немецкими учеными – Эрвином Неером и Бертом Закманом. За это достижение Неер и Закман были удостоены Нобелевской премии. Поистине инновационные направления в науке нередко возникают на стыке разных дисциплин, и сочетание талантов этих двух ученых служит прекрасным подтверждением данного тезиса. Неер был физиком, Закман – медиком, поэтому они подходили к проблеме с разных сторон. Их сотрудничество обеспечило широту взглядов, необходимую, чтобы понять, куда может привести предложенная ими технология, и достаточное внимание к деталям, которое требуется для отработки метода. Как выразился их коллега Дэвид Кохун, они являются «настоящими учеными» – скромными, непретенциозными, смелыми и вдохновленными.

Неер и Закман рассудили, что если ионные каналы реально существуют, то наверняка есть способ, позволяющий регистрировать текущие через них ничтожные токи, и взялись в начале 1970-х гг. за его поиск. Они решили использовать тончайшую наполненную жидкостью стеклянную трубку в качестве измерительного электрода. Кончик этой трубки должен был при осторожном прикосновении к поверхности клетки изолировать отдельный ионный канал на участке мембраны, попавшем под него. В случае успеха это позволило бы измерять токи, текущие через канал, когда он открывается. Метод назвали «локальная фиксация потенциала», поскольку он давал возможность регистрировать ток, текущий через крошечный участок клеточной мембраны.

Чтобы добиться успеха, Нееру и Закману понадобились годы. Дело в том, что им требовалась специальная аппаратура, способная усиливать очень слабые сигналы, а она не только не выпускалась серийно, ее просто не существовало. Поэтому ученым пришлось создавать усилители самим. Каждый раз при появлении какого-нибудь технического новшества они переделывали свою аппаратуру и снова пытались провести измерения. Ключевой проблемой был шум, в котором терялся нужный им ничтожный сигнал. Электрические цепи (в том числе и биологические) всегда генерируют шум вроде того шипения и свиста, которые мы слышим в старом радиоприемнике. Неер и Закман перепробовали массу способов снижения фонового шума, и их упорство принесло результат. Примерно в 1974 г. им удалось выделить токи, возникающие в отдельно взятом канале, – они выглядели на графике как крошечные прямоугольные импульсы, которые возникали в результате течения ионов через пору каждый раз, когда канал открывался. Некоторое время ученые не осмеливались сообщать о полученных результатах, поскольку токи регистрировались только при самых благоприятных условиях, но в конце концов, проделав огромную работу, они убедились в их надежности и решились на публикацию.

Их статья произвела фурор, однако из-за сложности предложенного метода мало кто попытался тут же воспроизвести результат. Фоновый шум по-прежнему оставался проблемой и препятствовал измерению малых токов. В течение следующих двух лет ученые безуспешно пытались повысить качество измерений – никакие ухищрения не помогали. А потом совершенно неожиданно пришла идея относительно того, что нужно сделать. Иногда при проведении экспериментов шум резко падал – настолько низко, что график тока превращался в плоскую линию. Полагая, что кончик электрода забился инородными частицами, ученые немедленно прекращали эксперимент (и выплескивали младенца вместе с водой). Однако в очень редких случаях эксперимент продолжался, и тогда ионные токи проявлялись с удивительной ясностью. Причины такого явления они тогда не знали, а происходило это потому, что клеточная мембрана очень плотно прижималась к стеклянному электроду, устраняя практически полностью фоновый шум. Таким образом, становилось возможным скачкообразное повышение разрешения измерительной системы.

Надежно воспроизвести подобное идеальное измерение не удавалось вплоть до января 1980 г., когда Неер понял, что при использовании свежего электрода шансы на плотное прилегание к мембране повышаются. В приподнятом настроении он позвонил своему коллеге и сказал: «Я знаю, как добраться до каналов!» История на этом, однако, не закончилась – даже свежие пипетки не всегда плотно прилегали к мембране. Удаление инородных частиц с клеточной мембраны с помощью ферментов или использование клеток искусственно выращенной ткани, которые заведомо имеют очень чистые мембраны, повышало вероятность успеха. Окончательным решением проблемы стало создание небольшого разрежения в электроде. Это, по всей видимости, приводило к частичному втягиванию мембраны в электрод и обеспечивало более плотное прилегание. Чтобы дойти до этого, потребовалось почти 10 лет.

Настоящие прорывы в науке случаются намного реже, чем можно подумать, глядя на сообщения в газетах, и происходят они не в одночасье, а обычно требуют долгих лет упорного труда, как показывает эта история. Усовершенствованный метод локальной фиксации потенциала был в подлинном смысле революционным. Очень быстро выяснилось, что он намного более универсален, чем представлялось первоначально. Удивительная стабильность контакта между стеклянной пипеткой и клеточной мембраной позволяла изолировать небольшие участки мембраны без ее повреждения и исследовать активность каналов на них. Этот метод открывал возможность изучения любых клеток организма, недоступную прежде, поскольку более старые технологии приводили к слишком сильному повреждению клеток.

Статья команды Неера и Закмана, содержавшая подробное описание метода осуществления измерений с высоким разрешением, взбудоражила научное сообщество и быстро стала классической. Практически на следующий день все захотели попробовать локальную фиксацию потенциала. Неер и Закман великодушно распахнули двери своих лабораторий, и весь мир отправился в Гёттинген осваивать метод. Даже тогда это было непростым делом, поскольку аппаратуру приходилось создавать самостоятельно. Я, например, не одну неделю билась над сложными электрическими схемами, держа паяльник в одной руке и утирая слезы другой. К счастью эта пытка продолжалась недолго – уже через несколько лет каждый мог купить отличные серийно выпускаемые усилители (если, конечно, у него были для этого деньги).

Теперь, когда можно было видеть электрический сигнал канала, настало время поиска ответов на самые разные вопросы. Сколько видов каналов существует? Какие функции они выполняют? Как именно они работают – какие молекулярные процессы в них происходят, когда они открываются и закрываются, как происходит отбор ионов, которые проходят через канал?

Генетический инструментарий

Практически в то же время, когда Неер и Закман дали нам возможность видеть ионные каналы в действии, произошла другая научная революция. Информация для синтеза каждого белка, который есть в нашем организме, закодирована в ДНК, и разработка новых методов молекулярной биологии сделала возможной идентификацию и манипулирование последовательностью ДНК, отвечающей за отдельный белок. Белки строятся из линейной цепи аминокислот, однако – подобно бусам, упавшим на пол, – они свертываются и приобретают значительно более сложные формы. Одни белки могут встраиваться в мембрану, а другие располагаются внутри или снаружи клетки. Белок может даже изгибаться так, что часть его структуры переворачивается, или, перефразируя Т. С. Элиота[15], конец становится началом. Трехмерная форма, которую принимает белок, имеет критически важное значение – ионные каналы должны образовывать проход, через который текут ионы, сигнальные молекулы должны удобно стыковываться с их целевыми рецепторами, структурные белки должны плотно прилегать друг к другу. Иногда несколько белковых цепочек образуют еще более сложную структуру. Калиевые каналы, например, как правило, формируются из четырех одинаковых элементов, которые связаны друг с другом так, что образуют центральную пору, пропускающую ионы.

В настоящее время невозможно точно сказать, как из простой последовательности аминокислот возникает трехмерная структура белка. Однако для полного понимания работы канала важно иметь некоторое представление о том, на что она похожа. Отправной точкой на пути к пониманию взаимосвязи между структурой и функцией стало знание последовательности ДНК. Когда известен генетический код белка, его можно изменять и получать каналы «на заказ», подстроенные под вопрос, который вас интересует. Хотите знать, что делает конкретная аминокислота? Нет ничего проще: замените ее на другую и посмотрите, что произойдет. Именно так и происходит сегодня. Теперь, когда мы знаем полную последовательность генома человека (и многих других биологических видов), последовательность ДНК нужного вам белка можно найти в онлайновой базе данных и заказать ее у какой-нибудь коммерческой компании примерно за £1000. Вы получите ее в течение нескольких дней – невидимую невооруженным глазом каплю на кусочке фильтровальной бумаги. В 1980-х гг., однако, ситуация была не такой простой. Последовательность ДНК нужно было определять своими силами, а на это могла уйти масса времени, в некоторых случаях многие-многие годы.

 

Игольное ушко

Так или иначе, соединение молекулярной биологии с новыми методами измерения электрических сигналов постепенно начало приподнимать завесу тайны над проблемой избирательности ионных каналов – над тем, каким образом каналы различают ионы. Как оказалось, учитывая, что одноименные заряды отталкиваются, а разноименные притягиваются, на входе во многие каналы формируются заряженные кольца, которые предотвращают проникновение ионов или помогают ему. Так, с помощью отрицательного заряда, который притягивает катионы и отталкивает анионы, канал может пропускать все катионы и блокировать вход для всех анионов. Критическая проблема, которая возникает в случае большинства ионных каналов, заключается в том, как обеспечить высокую селективность без снижения скорости прохождения ионов через пору. Один из самых сложных вопросов касался механизма, позволявшего калиевым каналам пропускать ионы калия, но закрывать вход для значительно меньших по размеру ионов натрия, которые также имеют положительный заряд. Эта загадка не давала ученым покоя много лет. Конечно, существовала расплывчатая идея, грубая модель работы канала, основанная на массе функциональных экспериментов, однако в реальности не хватало связи между этой информацией и структурным пониманием. Как на самом деле выглядел калиевый канал? Загадка была окончательно решена в 1998 г., когда Род Маккиннон добился потрясающего прорыва: выращивая кристаллы белка калиевого канала и просвечивая их рентгеновскими лучами, он смог впервые увидеть каждый атом калиевого канала. Ионы калия удалось поймать «на месте преступления» – в различных точках внутри поры, так что их путь через мембрану был виден во всех деталях.

Человек хрупкого сложения с лицом эльфа, Маккиннон – один из самых талантливых ученых, которых я знаю. Он твердо вознамерился решить загадку каналов и намного раньше других понял, что единственный способ добиться этого – напрямую разобрать структуру канала, атом за атомом. Подобная задача была не для слабых духом, никто не делал этого ранее, никто реально не знал, как сделать это, а большинство вообще не верило, что такое может быть сделано даже в ближайшем будущем. Технические сложности казались непреодолимыми, да к тому же Маккиннон был далек от профессии кристаллографа. Однако он не только блестящий ученый, но и бесстрашный, целеустремленный и чрезвычайно трудолюбивый человек (он славится своей способностью работать круглые сутки, урывая всего несколько часов на сон между экспериментами). Трудности его не останавливали, он сменил сферу своей научной деятельности и место работы – оставил должность в Гарварде и перебрался в Рокфеллеровский университет, поскольку считал, что условия там лучше. Некоторые думали, что он просто сошел с ума. В ретроспективе, впрочем, видно, что его решение было правильным. Всего через два года Маккиннона встретили бурной овацией – беспрецедентное явление для научного заседания, – когда он впервые представил структуру калиевого канала. Ионные каналы снова и снова приводили в Стокгольм{6}.

Рентгеновская структура показывала в мельчайших деталях, как работает калиевый канал, как он обеспечивает очень быстрый перенос ионов калия, настолько быстрый, словно на пути ионов не было никаких препятствий, и одновременно не пропускает более мелкие ионы натрия. Калиевые каналы, как оказалось, имели специальные «селективные фильтры» – короткие зоны, в которых пора сужается настолько, что проникающие ионы взаимодействуют со стенками. Попросту говоря, ширина такой зоны достаточна, чтобы протиснулся ион калия, но ничто более крупное пройти через нее не может. Фактически проход настолько мал, что калию приходится сбрасывать оболочку из молекул воды. В растворах все ионы окружены толстым слоем воды, и нужно немало усилий, чтобы освободиться от нее. Калий довольно легко освобождается от оболочки, поскольку селективный фильтр имитирует объятия водяной оболочки. С натрием же дело обстоит иначе. Хотя натрий довольно мал, чтобы проскользнуть через пору в обезвоженном состоянии, для удаления воды требуется слишком большое усилие – намного большее, чем энергия, которая генерируется в результате сжатия селективного фильтра, – поэтому он так и остается в водяной рубашке. А вместе с рубашкой натрий просто слишком велик, чтобы войти в пору.

Открытое и закрытое состояние

Ионные каналы – шлюзы клетки. Их важнейшее свойство состоит, пожалуй, в том, что они открываются и закрываются, регулируя движение ионов, а самое главное, процесс открывания и закрывания (их «воротный» механизм) жестко контролируется посредством присоединения внутриклеточных или наружных химических веществ, механического напряжения или изменения разности потенциалов на клеточной мембране.

Нервные клетки общаются друг с другом через химические посланники, известные как медиаторы, которые взаимодействуют со специализированными ионными каналами в мембране целевой клетки. Медиатор присоединяется к определенному участку белка канала, входя в него, как ключ в замок. Это вызывает конформационное изменение белка канала, который открывает пору и позволяет ионам проходить через нее. Мы пока еще мало знаем о том, как происходит такое изменение формы, или о том, каким образом присоединение химического вещества в определенном месте приводит к структурному изменению другой части белка, которая может находиться на значительном удалении. Такой механизм управления каналами имеет очень большое значение не только потому, что он обеспечивает передачу информации между клетками, но и потому, что многие медицинские препараты и яды воздействуют на активность каналов (и, таким образом, на клеточные функции), присоединяясь к тому же участку, что и естественный медиатор, и блокируя или имитируя действие этого медиатора.

Например, яд кураре, который южноамериканские индейцы наносят на стрелы, присоединяется к ионным каналам, участвующим в процессе передачи импульсов в нервных и мышечных волокнах, и блокирует действие естественного медиатора, вызывая паралич. А галюциноген ЛСД имитирует действие медиатора серотонина, вызывая чрезмерную стимуляцию определенных нейронов мозга. Мой любимый АТФ-зависимый калиевый канал закрывается при присоединении АТФ, генерируемого при расщеплении глюкозы, – именно таким образом метаболизм глюкозы приводит к закрыванию канала и секреции инсулина. Если связывающий участок изменяется, например в результате мутации, как в случае Джеймса, то АТФ не может присоединиться, АТФ-зависимый калиевый канал не закрывается, а инсулин не вырабатывается. Итогом является диабет.

При «потенциал-зависимом» механизме управления (воротном механизме) канал должен быть чувствительным к изменению потенциала электрического поля на мембране. На мембране всех клеток существует разность потенциалов, причем внутренний потенциал примерно на 70 мВ более отрицателен, чем наружный. Когда нерв генерирует электрический импульс, этот внутренний потенциал резко возрастает приблизительно на 100 мВ и на короткое время становится положительным по отношению к наружному. Сотня милливольт может показаться незначительной величиной, однако это не так, поскольку мембрана очень тонкая. С учетом толщины мембраны напряженность электрического поля, действующего на канал, может быть огромной – порядка 100 000 В/см. Напряжение бытовой сети электроснабжения в Великобритании составляет 240 В, и если вы по неосторожности прикоснетесь к оголенному проводу (надеюсь, что с вами этого никогда не случится), то получите представление о том, какой удар током получает ионный канал, когда нерв генерирует импульс. Если посмотреть на проблему под таким углом, то способность изменения потенциала преобразовывать конформацию белка и переводить его из одного состояния в другое уже не вызывает удивления. О том, что каналы реагируют на напряженность электрического поля, мы узнали всего 25 лет назад, и точные детали этого явления все еще горячо обсуждаются.

В состоянии покоя потенциал-зависимые натриевые и калиевые каналы клеток нервной и мышечной ткани находятся в закрытом состоянии под действием отрицательного мембранного потенциала. Они открываются только тогда, когда потенциал смещается в положительную сторону, и если это происходит, то генерируется электрический импульс. О том, как об этом узнали и как распутывали загадки, связанные с работой нервов и мышц, рассказывается в следующих главах.

Глава 3
Импульс к действию

 
Я не смог увидеть ее сегодня.
Мне придется забыть о ней,
Поэтому я буду есть фугу.
 
Ёса Бусон

Во время экспедиции в южные моря в 1774 г. капитан Джеймс Кук сделал следующую запись о необычных симптомах, которые он испытал, попробовав неизвестную уродливую рыбу: «Зарисовка и описание затянулись допоздна, и приготовили только печень и икру, которые я и г-н Фостерс попробовали на вкус. Ночью около трех мы оба почувствовали сильную слабость и онемение конечностей – я практически лишился осязания и не чувствовал разницу между легкими и тяжелыми предметами, которые хватало силы поднять. Литровая кружка с водой и перышко казались мне одинаковыми. Мы приняли рвотное средство, после которого нам стало значительно легче. Наутро мы обнаружили, что свиньи, съевшие внутренности, издохли. Когда на борт корабля поднялись аборигены и увидели подвешенную рыбу, они сразу же дали нам понять, что она не годится в пищу, и выказали полное отвращение к ней».

Не исключено, что на стол Кука и его команды попал иглобрюх. Печень, внутренности, кожа и икра этой рыбы содержат опасный яд, тетродотоксин, который блокирует натриевые каналы в клетках нервной и мышечной ткани. В результате подавляются нервные импульсы и сокращение мышц. Отравившиеся обычно умирают от удушья, вызванного параличом дыхательных мышц. Куку очень повезло – количество съеденной им рыбы было не настолько большим, чтобы убить его.

15Т. С. Элиот (1888–1965) – американо-английский поэт, драматург и литературный критик. – Прим. пер.
6Род Маккиннон получил Нобелевскую премию в 2003 г. вместе с Питером Эгром, история которого рассказывается в главе 8.
Купите 3 книги одновременно и выберите четвёртую в подарок!

Чтобы воспользоваться акцией, добавьте нужные книги в корзину. Сделать это можно на странице каждой книги, либо в общем списке:

  1. Нажмите на многоточие
    рядом с книгой
  2. Выберите пункт
    «Добавить в корзину»