Читайте только на Литрес

Книгу нельзя скачать файлом, но можно читать в нашем приложении или онлайн на сайте.

Читать книгу: «Нетрадиционные углеводородные источники: новые технологии их разработки. Монография»

Шрифт:

ebooks@prospekt.org

Информация о книге

УДК 553.98

ББК 26.325.4

К79

Крейнин Е. В. – д.т.н., профессор, действительный член РАЕН, удостоен звания «Заслуженный изобретатель РСФСР». Им опубликовано 330 печатных работ, в том числе 9 монографий, получено 135 российских авторских свидетельств и патентов на изобретения.

Современные тенденции развития мировой энергетики направлены на вовлечение в топливно-энергетический баланс нетрадиционных углеводородных источников: метансланцевых, угольных и газогидратных месторождений, а также высоковязкие нефти и битумы, извлечение которых пока проблематично.

В монографии изложены инженерные и научные основы разработки нетрадиционных трудноизвлекаемых углеводородных источников, добыча которых стала приоритетной задачей современного мирового топливно-энергетического комплекса. Предлагаемые технические решения подтверждены многочисленными патентами Российской Федерации.

Особый интерес представляет перспектива производства синтетических углеводородов (жидких и газообразных) из угля при его подземной газификации.

Практическая реализация разработанных технологий позволит существенно расширить ресурсную базу экологически чистых органических топлив.

УДК 553.98

ББК 26.325.4

© Крейнин Е. В., 2015

© ООО «Проспект», 2015

СОКРАЩЕНИЯ

В книге применяются следующие сокращения:

CRIP – The Controlled Retracting Injection Point (пер. с англ.: контролируемый перенос очага горения – метод КРИП);

CTL – coal-to-liquids (пер. с англ.: уголь в жидкость);

GTL – gas-to-liquids (пер. с англ.: газ в жидкость);

ЕЭС – Европейское экономическое содружество;

ЗПГ – заменитель природного газа;

КПД – коэффициент полезного действия;

ОНГКМ – Оренбургское нефте-газоконденсатное месторождение;

ПГУ – подземная газификация угля;

ПГУ-СФТ – подземная газификация угля – синтез Фишера-Тропша;

ПДК – предельно допустимая концентрация;

СФТ – синтез Фишера-Тропша;

ТЭС – тепловая электрическая станция.

ПРЕДИСЛОВИЕ

Посвящается 65-летию со времени основания института ВНИИПодземгаз (июль 1949 г.), последовательно переименованного во ВНИИПромгаз, ВНПО «Союзпромгаз» и сегодняшнее ОАО «Газпром промгаз».


В последнее время мировая энергетика вынуждена активно заниматься проблемой освоения нетрадиционных газов (угольный метан, сланцевый газ, природные газовые гидраты, газ подземной газификации угля и др.). Энергетическая безопасность и устойчивость будущего общества требуют вовлечения этих нетрадиционных источников углеводородного сырья в промышленное потребление.

Кроме того, нетрадиционные газы особенно значимы для регионов, далеко расположенных от источников трубопроводного природного газа. К ним, в первую очередь, следует отнести регионы с угольными и сланцевыми месторождениями.

Поэтому ученые и инженеры всего мира начали активно заниматься проектами их промышленного освоения. Появилась острая необходимость в новых прорывных технологиях.

Современные тенденции развития мировой энергетики направлены на вовлечение в ее топливно-энергетический баланс нетрадиционных трудноизвлекаемых углеводородных источников. К ним относят метан угольных, сланцевых и газогидратных месторождений, в том числе содержащийся в малопроницаемых породных коллекторах. Велики также ресурсы высоковязких нефтей и битумов, извлечение которых пока проблематично.

На рис. 1 обобщены отдельные данные по ресурсам основных видов трудноизвлекаемых топлив.


Рис. 1Виды трудноизвлекаемых топлив

Особое место отведено возможности превращения угля в углеводородное сырье. Современные передовые технологии в мире посвящены синтезу углеводородов из газа, генерируемого при газификации угля. При этом в рамках настоящей монографии рассматривается подземная газификация угля на месте его естественного залегания и превращения получаемого газа через синтез Фишера-Тропша в газообразные и жидкие углеводороды.

Одновременно с необходимостью разработки экологически чистых топливных (угольных) технологий надо принимать во внимание современную направленность поисков «зеленой» энергетики и экономики [1].

Под «зеленой» энергетикой понимают, прежде всего, возобновляемые неуглеводородные источники, работающие на энергии ветра, солнца и воды.

Ускорению развития «зеленой» энергетики в существенной мере содействуют риски крупномасштабных аварий, подобные катастрофам на атомных электрических станциях в Чернобыле (СССР, 1986 г.) и Фукусиме (Япония, 2011 г.).

Эксперты-энергетики прогнозируют масштабное использование возобновляемых энергетических источников только во второй половине нынешнего века.

Характерными особенностями топливно-энергетического комплекса являются неполнота извлечения его традиционных ресурсов (подвижные нефти, газовый конденсат, природный газ и уголь на глубине до 400–500 м) и практическая неосвоенность нетрадиционных источников углеводородного сырья (высоковязкие нефти, природные битумы, нефтегазоносные породы с низким коэффициентом проницаемости, газогидратные месторождения, уголь на глубине более 800 м, угольный метан). Ресурсы неизвлеченных (оставленных) традиционных и сегодня неизвлекаемых нетрадиционных источников углеводородного сырья на порядки превышают запасы традиционных видов топлива.

С учетом ограниченности доступных запасов нефти и природного газа (по экспертным оценкам, их хватит на 30–50 лет), возникает острая проблема, с одной стороны, повышения степени их извлечения и, с другой стороны, освоения нетрадиционных топливных ресурсов. Нужны новые технологии, характеризующиеся минимальными материальными затратами и эффективными техническими решениями.

В то же время масштабность запасов угля в Российской Федерации и мире (по некоторым оценкам, угля хватит на срок более 500 лет), бесшахтные методы его добычи и переработки могли бы заметно увеличить долю угля в топливно-энергетическом балансе страны. К сожалению, в 2010 г. она составила всего 13 %.

Информация о ресурсах нетрадиционных углеводородных газов была детально рассмотрена на ХХIV Международном газовом конгрессе, который проходил в г. Буэнос-Айрес в 2009 г.

Международное энергетическое агентство обобщило в своем последнем докладе [2] исследования нескольких авторов [3–5] и представило информацию о состоянии ресурсов нетрадиционных газов по регионам мира (табл. 1).

Таблица 1

Мировые ресурсы нетрадиционного газа, трлн м3

Состояние использования топлива в тепловых электростанциях стран «Большой Восьмерки» иллюстрируется данными табл. 2 [6].

Таблица 2

Структура первичных энергоносителей на тепловых электростанциях «Большой Восьмерки» в 2000 г.

В странах «Большой Восьмерки» доля тепловых электростанций превышает 60 %. Наиболее низкая доля тепловых электростанций во Франции – 9,5 % (основная часть электроэнергии – более 77 % – вырабатывается на атомных электростанциях) и в Канаде – 25,9 %, где электроэнергия вырабатывается в основном на гидроэлектростанциях (60,4 %).

На тепловых электростанциях в большинстве стран, за исключением Японии и Италии, используется уголь. Доля природного газа – от 15 до 20 %, и только в Великобритании она достигает 55 %. В Японии доля отдельных первичных энергоносителей на тепловых электростанциях примерно одинакова. В Италии тепловая электроэнергетика ориентируется преимущественно на использование мазута и природного газа (табл. 2).

В соответствии со стратегией развития электроэнергетики Российской Федерации на ближайшие годы, доля природного газа останется равной 67–68 %, угля – 25–26 %, мазута – 3,1–3,3 %.

Вместе с этим сегодня эксперты-энергетики и политические круги ставят вопрос о необходимости планомерного замещения газа углем [7]. Это неизбежно потребует корректировки ранее разработанной энергетической стратегии, тем более что потенциал российской угледобывающей промышленности далеко не исчерпан и позволяет наращивать объемы добычи угля. При этом нельзя не учитывать опыта развитых стран Запада в вопросах рационального использования топлива.

Однако увеличению доли угля в топливно-энергетическом балансе страны в существенной мере препятствуют экологические последствия. Традиционные технологии добычи и сжигания угля сопряжены с негативным воздействием на земную поверхность и воздушный бассейн. Для угольных тепловых электрических станций характерны существенные выбросы токсичных газообразных веществ и твердых частиц.

Нами были изучены многочисленные источники информации по выбросам, образующимся при сжигании различных видов органического топлива (табл. 3), в соответствии с которыми наиболее экологически грязным является твердое топливо [8].

При этом самым экологически чистым энергоносителем (при применяемых в настоящее время общепринятых технологиях сжигания топлива) является природный газ. Результаты исследований показывают, что при используемых в настоящее время технологиях, в случае сокращения объемов применения газа и замены его углем, на тепловой электрической станции значительно возрастут объемы выбросов не только газообразных веществ, но и токсичных микроэлементов.

Однако это не означает, что твердое и жидкое топливо целесообразно заменять газообразным. С учетом того, что запасы природного газа и нефти – на порядки меньше запасов угля, природный газ следует использовать главным образом в сферах его максимальной эффективности.

Таблица 3

Удельные выбросы основных компонентов отходящих газов при сжигании различных видов органического топлива, кг/т у. т.

Примечания:

1) тяжелый мазут;

2) легкий мазут.

Доля твердого топлива в топливно-энергетическом балансе страны должна непрерывно возрастать, причем его добычу и применение необходимо осуществлять на экологически чистой основе [9]. В мировой теплоэнергетической практике уже внедряются прогрессивные угольные технологии: внутрицикловая газификация угля, создание циркулирующего кипящего слоя угольной мелочи, водоугольные суспензии и т. д. В электроэнергетике Российской Федерации эти достижения пока не используются.

• Природные угли всех видов, в особенности малоценные породы (бурый уголь и др.), содержат минеральные компоненты, соединения серы, азота, тяжелых металлов и т. д. Их присутствие сдерживает перспективы применения угля в качестве топлива в связи с возможностью загрязнения окружающей среды [10]. В атмосферу при переработке угля попадают газообразные продукты окисления содержащихся в угле примесей. В частности, только при энергетическом сжигании угля ежегодно в атмосферу попадает 90 млн т оксидов серы и 30 млн т оксидов азота. Вместе с золой в атмосферу ежегодно попадают 60 тыс. т свинца, 50 тыс. т никеля, 30 тыс. т мышьяка, 300 т ртути и 60 т кадмия. Все эти вещества могут вызывать болезни органов дыхания. Соединения тяжелых металлов могут становиться причиной болезней почек. Ароматические соединения обладают канцерогенным и мутагенным действием. Серьезной проблемой является и относительно высокая доля углекислого газа, образующегося при сжигании угля, по сравнению с другими видами топлива. Парниковый эффект, вызываемый большими количествами диоксида углерода, попадающими в атмосферу, является одной из серьезнейших и пока еще нерешенных мировых проблем [11].

На современном этапе лишь с очень большой степенью приближения можно говорить об экологически чистых угольных технологиях. Однако мнение, что применение угля вообще неприемлемо, с точки зрения его воздействия на окружающую среду, является ошибочным. Уже сейчас существует широкий спектр технологий по переработке и утилизации угля, которые совместимы с окружающей средой. Эти технологии основаны на меньшем потреблении энергии и ресурсов, рециркуляции части отходов и продуктов, получении меньшего количества отходов, к тому же более приемлемых для окружающей среды. Развитие таких технологий способствует продвижению угля в качестве конкурентоспособного и безопасного источника энергии.

Только такие угольные технологии, которые позволят резко снизить выбросы в атмосферу вредных примесей, а также уменьшить эмиссию диоксида углерода при увеличении энергетической и технологической эффективности, можно рассматривать как экологически чистые угольные технологии, совместимые с окружающей средой.

Традиционные методы добычи и потребления угля обусловливают превращение угольных регионов в зоны экологического бедствия. Особенно это характерно для производств, на которых сжигают уголь. Так, на каждый киловатт установленной мощности угольной электростанции ежегодно выбрасывают в атмосферу 500 кг золы и шлаков, 75 кг окислов серы и 10 кг окислов азота. В результате небольшая электростанция мощностью 200 МВт в течение года выбрасывает в атмосферу 100 тыс. т твердых частиц, 15 тыс. т сернистых соединений и 2 тыс. т окислов азота.

В связи с этим отечественной топливной энергетике крайне необходимы новые современные экологически чистые угольные технологии!

К нетрадиционным экологически чистым технологиям разработки угольных пластов и сжигания угля в первую очередь следует отнести подземную газификацию угля. При подземной газификации уголь на месте залегания превращают в газообразный горючий энергоноситель путем подвода к раскаленной угольной поверхности (через систему дутьевых скважин) окислителя и отвода (через другую систему газоотводящих скважин) образовавшегося горючего газа.

Теплота сгорания газа, полученного при подземной газификации угля на воздушном дутье, может достигать 4,6–5,4 МДж/м3. При применении дутья, обогащенного кислородом (концентрация кислорода в дутье – 65 %), теплота сгорания газа достигает 6,7 МДж/м3, а на чистом техническом кислороде (концентрация кислорода в дутье – 98 %) – до 10–11 МДж/м3.

Новые технологические приемы и конструктивные решения существенно превосходят уровень подземной газификации угля семидесятых годов двадцатого века, когда СССР была продана лицензия на технологию подземной газификации угля в США. Новые конструкции дутьевых и газоотводящих скважин, а также управляемая система выгазования угольного пласта позволяют получить следующие преимущества:

• устойчиво получать газ с теплотой сгорания 4,6–5,4 МДж/м3 на воздушном дутье и 10–11 МДж/м3 на кислородном дутье;

• повысить степень выгазования угольного пласта до 90–95 %;

• снизить утечки газа из подземного газогенератора до 5 %;

• повысить коэффициент полезного действия газификации до 80 %;

• минимизировать экологическое воздействие на подземную гидросферу;

• отрабатывать оставленные запасы угольных шахт, в том числе закрывающихся, методом нагнетательно-отсосной технологии подземной газификации угля;

• разрабатывать глубоко залегающие угольные пласты и учитывать при этом проявление горного давления;

• уменьшить количество буровых скважин и снизить расходы на бурение в себестоимости газа с 30 до 10 %;

• получать газообразный энергоноситель, себестоимость которого в 1,5–2 раза ниже, чем себестоимость условного топлива на соседних угольных шахтах;

• получать из газа подземной газификации угля заменитель природного газа, себестоимость которого – $60–70/1000 м3.

Для предприятия подземной газификации угля оптимальным является выгазование 400–500 тыс. т у. т. / год, при этом размер инвестиций на строительство такого предприятия составляет 2500–2600 руб. / т у. т. [9]

Подземная газификация угля, в отличие от традиционных способов его добычи, не создает экологические ущербы при добыче, хранении и транспорте угля, а главное – при его сжигании, т. к. в отходящих продуктах не содержатся твердые частицы (зола и несгоревший уголь) и существенно меньше экологически вредных компонентов (NОх, SО2 и СО). Поэтому одновременно с разработкой экологически чистых угольных технологий необходимо активизировать разработку эффективных технологий добычи нетрадиционных углеводородных ресурсов, о которых было сказано выше (рис. 1).

Большинство каменноугольных месторождений Российской Федерации – газоугольные. Метаноносность высокометаморфизованных угольных пластов таких месторождений возрастает с увеличением глубины их залегания и достигает 45–50 м3/т. Сорбированный метан угленосной толщи, а также метан свободных скоплений, с одной стороны, становится причиной взрывов в угольных шахтах, которые приводят к гибели шахтеров, а с другой стороны – ценным газообразным энергоносителем.

Задача заключается в изыскании экономически выгодных и эффективных технологий извлечения угольного метана. Дегазация угольных месторождений возможна как из существующих шахтных горных выработок, так и заблаговременно, до начала строительства шахты. На наш взгляд, наиболее целесообразна и безопасна предварительная дегазация угольных пластов.

Существующая в настоящее время в Российской Федерации традиционная технология дегазации угольных пластов [12, 13] экстенсивна и малоэффективна. Она основана, прежде всего, на бурении из горных выработок и с поверхности большого количества различных скважин (веерных, кустовых, параллельных, перекрещивающихся и др.). Диаметр дегазационных скважин, как правило, составляет 50–100 мм, а их длина колеблется от 5 до 40 м. Иногда через эти скважины осуществляют гидроразрыв угольного пласта.

Коэффициент дегазации (степень извлечения метана) угольных пластов по традиционной технологии колеблется от 10 до 40 %. Невысокая степень извлечения угольного метана обусловлена, прежде всего, малой поверхностью фильтрации каналов дегазации, а следовательно, малыми притоками к ним газа.

Есть целая группа видов углеводородного сырья, критериями отнесения которых к нетрадиционным видам являются не столько экономические, сколько технологические и геологические параметры. Для многих из них не выявлена возможность эффективного промышленного освоения даже в долгосрочной перспективе. Но сам факт их наличия и широкого распространения уже доказан.

К таким нетрадиционным источникам углеводородного сырья могут быть отнесены все виды нефтенасыщенных пород с низкими коэффициентами проницаемости и извлечения, а также высоковязкие нефти и природные битумы. Их ресурсы на порядки превышают ресурсы традиционных источников. Они могут реально компенсировать падающую добычу углеводородного сырья и заметно снизить дефицит в местном энергоснабжении. При этом нельзя забывать о наличии во многих скоплениях тяжелых нефтей и битумов редкоземельных элементов, например ванадия.

Так, по оценке Всероссийского нефтяного научно-исследовательского геологоразведочного института, рациональное и комплексное освоение тяжелых нефтей и природных битумов позволит в ближайшей перспективе ежегодно дополнительно добывать (в пределах бывшего СССР) 30–40 млн т нефтепродуктов и ликвидировать дефицит редкоземельных элементов, например ванадия для металлургии [3].

Объективных данных о мировых запасах природных битумов не существует. Однако есть отдельные оценки, в соответствии с которыми мировые ресурсы природных битумов оцениваются в 2800 млрд баррелей (или 445 млрд т), в том числе в пределах бывшего СССР – 380 млрд баррелей (или 60 млрд т).

Ресурсы тяжелых нефтей в мире оцениваются в 306 млрд баррелей (или 50 млрд т). В 1987 г. в мире добывали 2300 млн баррелей тяжелых нефтей (или 360 млн т), что составляло 11 % от общего уровня добычи нефти. В бывшем СССР добыча тяжелых нефтей была также ограничена техническими трудностями и составляла 10 % от общего уровня добычи нефти в СССР.

Для того чтобы нетрадиционные источники углеводородного сырья стали составной частью сырьевой базы нефтегазовой промышленности, необходимы интенсивные поиски новых эффективных технологий их освоения.

В настоящее время термические методы увеличения нефтеотдачи (помимо методов заводнения) рассматриваются как единственная, реализуемая на промышленном уровне, альтернатива.

К сожалению, термическим методам присущи определенные ограничения, которые препятствуют их широкому распространению. Физико-технические и экологические аспекты этих методов широко изучаются. Психологическим аспектом этой проблемы является страх перед сложностью природы тепловых процессов. Существенным вкладом в осознание результатов термического воздействия на нефтеносный пласт является труд французских ученых [14], что, на наш взгляд, поможет более активному распространению термических методов.

К таким технологиям мы относим термические и гидродинамические методы, которые в сочетании с протяженными горизонтальными буровыми каналами позволяют резко повысить степень извлечения не только традиционных, но и нетрадиционных ресурсов топлива.

Физико-химические процессы предлагаемых новых технологий основаны на окислении и нагреве пласта топлива, превращении части последнего в новое агрегатное состояние, изменении, благодаря этому, теплофизических параметров топлива и коллектора пласта, которые обуславливают повышение степени извлечения углеводородного сырья.

Мировые ресурсы нетрадиционных углеводородных газов представлены в табл. 1. Прогнозируемые Международным энергетическим агентством ресурсы нетрадиционного метана малопроницаемых пород, угольных и сланцевых месторождений превышают 900 трлн м3. Задача заключается в разработке эффективных технических решений для добычи этих нетрадиционных углеводородных газов.

В ОАО «Газпром» уделяют внимание проблеме нетрадиционных углеводородных источников. Так, 25 апреля 2012 г. Совет директоров ОАО «Газпром» рассмотрел на своем заседании перспективы добычи в Российской Федерации нетрадиционных газов (угольный метан, сланцевый газ, биогаз). Отраслевой журнал «Газовая промышленность» в своих специальных выпусках [15, 16] представил обширный материал (в виде отдельных статей) по геологии, экономике и добыче трудноизвлекаемых углеводородов.

В связи с этим в рамках настоящей монографии автор обобщил мировой опыт освоения нетрадиционных источников углеводородного сырья и детально рассмотрел физико-химические основы новых технических решений, которые направлены на разработку промышленных технологий эффективного извлечения таких видов углеводородного сырья.

419 ₽

Начислим

+13

Покупайте книги и получайте бонусы в Литрес, Читай-городе и Буквоеде.

Участвовать в бонусной программе
Возрастное ограничение:
0+
Дата выхода на Литрес:
16 октября 2016
Объем:
325 стр. 160 иллюстраций
ISBN:
9785392195060
Правообладатель:
Проспект
Текст PDF
Средний рейтинг 3,9 на основе 13 оценок
По подписке
Текст PDF
Средний рейтинг 4,3 на основе 11 оценок
По подписке
Текст
Средний рейтинг 4,3 на основе 18 оценок
По подписке
Текст PDF
Средний рейтинг 0 на основе 0 оценок
По подписке
Текст PDF
Средний рейтинг 4,1 на основе 67 оценок
По подписке
Текст PDF
Средний рейтинг 3,7 на основе 9 оценок
Текст, доступен аудиоформат
Средний рейтинг 4,1 на основе 65 оценок
Текст
Средний рейтинг 4,4 на основе 24 оценок
По подписке