Научно-эзотерические основы мироздания. Жить, чтобы знать. Книга 2

Текст
Читать фрагмент
Отметить прочитанной
Как читать книгу после покупки
Шрифт:Меньше АаБольше Аа

Эксперименты на БАК

Высокоэнергетические столкновения субатомных частиц – основной метод, который используют физики для изучения их свойств, и по этой причине физика частиц также носит название физики высоких энергий. Кинетическая энергия обеспечивается в огромных (достигающих в окружности нескольких километров) ускорителях частиц, в которых частицы разгоняются до скорости, близкой к скорости света, а затем сталкиваются с другими частицами.

Энергия, заключенная в массах сталкивающихся частиц, преобразуется частично в кинетическую энергию других участников столкновения, а частично – в массы новых частиц. Вот эти новые частицы и интересуют исследователей в первую очередь.

Рассмотренный этап эксперимента называется подготовкой. Свойства частицы нельзя определить вне зависимости от самого процесса подготовки. Если в подготовку вносятся изменения, свойства частицы тоже изменяются.

Возникновение материальных частиц из чистой энергии является прекрасным подтверждением правильности положения ОТО, утверждающей, что масса – это одна из форм энергии [13].

С целью получения и изучения новых частиц ученые начали разгонять почти до скорости света потоки протонов, направленные навстречу друг другу. Ускорители таких встречных потоков называются коллайдерами.

Столкновения частиц – основной экспериментальный метод для изучения их свойств и взаимодействий, и красивые линии, спирали и дуги, зафиксированные на информационных носителях, имеют первостепенное значение для современной физики. Подвергая математическому анализу следы частиц, ученые могут говорить о свойствах этих частиц; при этом часто используют компьютеры, ибо анализ очень сложен. Все эти процессы составляют акт измерения.

В начале XXI века в Цюрихе совместными усилиями Германии, Франции и России был создан самый мощный на сегодня Большой адронный коллайдер (БАК), который представляет собой 27-километровое электромагнитное кольцо, закопанное на глубине 100 метров. Его создание обошлось в 2 миллиарда долларов (см. фото на вклейке).

В конце 2010 года появилось сообщение о том, что ученые провели первый «полнометражный» эксперимент на БАК – разогнали встречные пучки протонов до энергий в 3,5 тетраэлектронвольта. В результате энергия столкновения достигла небывалой величины – 7 тетраэлектронвольт.

По замыслу ученых, БАК позволит им смоделировать Большой взрыв, то есть сотворить так называемую кварк-глюонную плазму. Это невероятно горячий (до 10 триллионов °С) «суп» из протоматерии. В таком состоянии, по мнению ученых, Вселенная находилась через доли наносекунды после своего рождения.

Имитируя на Большом адронном коллайдере состояние Вселенной через доли наносекунды после ее рождения, ученые хотят узнать, как образуется материя. Они надеются «сотворить» материю, то есть добиться того, что кварки и глюоны объединятся в наделенные массой протон и нейтрон. Каким образом появляется масса? Это вопрос вопросов. Разбить протон на кварки оказалось проще, чем наоборот. Разрушать всегда легче, чем собирать.

По мнению ученых, должна появиться некая гипотетическая квазичастица (квази – почти), так называемый бозон Хиггса, который заставит глюоны собрать кварки в протон, наделив его массой. Если это удастся, то они, ученые, «сотворят» материю и разберутся в природе сильного взаимодействия.

За счет столкновения пучков протонов ученым удалось имитировать состояние легкой кварк-глюонной плазмы, которое моделирует праматерию через 10–34 секунды после Большого взрыва. Но праматерия не обладает массой. Не обнаружив желанного бозона Хиггса, ученые стали разгонять и сталкивать тяжелые ионы свинца, благодаря чему получили состояние тяжелой кварк-глюонной плазмы, моделирующей праматерию через 10–11 секунды после Большого взрыва, то есть гораздо позднее. Но она по-прежнему не обладает массой. Бозон Хиггса так и не обнаружился, материи из праматерии пока так и не получилось. Только энергия, движущаяся в миллиарды раз более интенсивно, чем она движется в центре Солнца. Наука пока не сумела продублировать Творца!

Однако последние новости ЦЕРН (13.12.2011) дали некоторую надежду на обнаружение неуловимого бозона. Ученым удалось получить предварительные данные, указывающие на то, что существует некая частица, которая очень похожа на бозон Хиггса. Для более уверенных утверждений потребуется дальнейший набор статистики, который начнется лишь весной следующего года [14].

Словом, неслучайно Творец в «Откровениях людям Нового века» очень высоко оценивает нашу земную науку. Он говорит: «Как это ни парадоксально звучит, но к Богу, к признанию Создателя, к Истине первыми пришли и идут ученые! Я пою Гимн ученым. Я пою Гимн их успехам в понимании мироустройства, энергетического строения миров, полет их высок, и успехи впечатляющие!»

Более того, Творец подчеркивает, что именно благодаря достижениям науки современное человечество не будет уничтожено. Ему будет дан шанс преодолеть квантовый переход.

Благодарим за внимание.

Литература

1. Ливанова А. Три судьбы постижения мира. Жизнь замечательных идей. М.: Знания, 1969.

2. Запорожец В. М. Начала естествознания двадцать первого века. М.: 2001.

3. Хокинг С. Краткая история времени. От Большого взрыва до черных дыр. СПб.: Амфора, 2005.

4. Проверка теории относительности // http://bannerweek.argoart.ru/?id=76211

5. Ацюковский В. А. Блеск и нищета теории относительности Эйнштейна // http://www.nbrilev.ru/problemy_teorii_otnositelnosty.htm

6. Букалов А. Теорию относительности проверяют на прочность // http://www.itar-tass.com/c19/260019.html

7. Ученые пошатнули теорию относительности Эйнштейна // http://2012over.ru/uchenie-poshatnuli-teoriju-otnositelnosti-jejjnshtejjna.html

8. Аксенов А. П., Пак В. В. Знахарь и ученый о чистой и нечистой силе. М.: Астрель, 1997.

9. Физический энциклопедический словарь. М.: Советская энциклопедия, 1984.

10. Шубейкина Т. Д. Новое представление и осмысление периодического закона Д. И. Менделеева через синтез науки, религии и философии // Сознание и физическая реальность. Т. 16. 2011. № 4. С. 2–21.

11. Шубейкина Т. Д. Единая спираль эволюции: новая физика сознания //Сознание и физическая реальность. Т. 17. № 4. 2012. С. 2–15.

12. Хайш Б. Теория Бога. Доказательство существования Бога в современной науке. К.: София, 2010.

13. Тихоплав В. Ю., Тихоплав Т. С. Новая физика веры. СПб.: Крылов, 2007.

14. Большой адронный коллайдер // http://elementy.ru/LHC/news

Лекция № 15. Развитие рациональной науки. Волновая механика

Квантовая физика

Дорогие друзья!

В одном из посланий Крайон говорит: «Чем больше вы будете узнавать о структуре атома, тем яснее для вас будет становиться Тонкий мир. Именно понимание поведения элементарных частиц – ключ к этому» [1].

Шаг в мир атомов был первым и самым важным шагом в путешествии в мир бесконечно малого. Но проникнув под оболочку атома, изучая его внутреннее устройство, наука вынуждена была нарушить свои же собственные установки: все посмотреть, пощупать, измерить, взвесить и т. д.

Исследование субатомного мира не отвечало этим требованиям. С этого момента наука уже не могла с уверенностью опираться на логику и здравый смысл. Налицо нарушение принципа, высказанного Фрэнсисом Бэконом. А уж развитие квантовой физики заставило вообще забыть об этом устаревшем требовании, выдвинутом в XVII веке: все увидеть и все потрогать. Оковы, которые сдерживали науку почти четыре столетия, были сброшены, и полет научной мысли привел к открытию поразительных знаний, ведущих человечество к Богу.

Познакомиться с успехами ученых в понимании мироустройства – это значит познакомиться с квантовой физикой, с удивительной наукой, которая перевернула все наши представления об окружающем мире. А точнее, вернула все на свои места, поставила все с головы на ноги.

Датой появления квантовой физики, которая заставит науку заниматься информационными взаимодействиями, сознанием и Тонким миром, является 1900 год. Основателем ее признан Макс Планк.

Пожалуй, стоит подчеркнуть, что в отличие от теории относительности, разработанной Эйнштейном самостоятельно, законы квантовой механики были сформулированы благодаря усилиям физиков разных стран: датчанина Нильса Бора, француза Луи де Бройля, австрийцев Эрвина Шредингера и Вольфганга Паули, немцев Макса Планка и Вернера Гейзенберга, англичанина Поля Дирака и других. Огромная заслуга в развитии этой науки принадлежит Альберту Эйнштейну.

В начале ХХ века Макс Планк, великий немецкий физик, исходя из результатов экспериментов, высказал идею, что свет (электромагнитное излучение) испускается не непрерывно, как это следует из теории излучения, а дискретно – порциями. Например, теплота от нагретой поверхности испускается непрерывно, а свет от источника, оказывается, испускается порциями.

Минимальную порцию энергии электромагнитного излучения Планк назвал квантом энергии. А процесс деления энергии на порции (на кванты) был назван квантованием.

Планк нашел формулу для определения величины этого кванта энергии. Формула проста: квант энергии равен некой константе, умноженной на частоту света. Эта некая константа оказалась фундаментальной константой квантования, которую благодарное человечество назвало постоянной Планка (а фундаментальных констант не так уж много: заряд и масса электрона, скорость света в пустоте и… постоянная Планка).

Постоянная Планка (h = 6,62 10–27 эрг с) устанавливает минимальный предел измерений всех физических параметров. Она определяет масштабы квантовых явлений и, главное, границы применимости классической и квантовой физики.

Вследствие чрезвычайно малой величины постоянной Планка квантование в макроскопических физических экспериментах остается незамеченным.

 

Лауреат Нобелевской премии, российский физик, академик РАН В. Л. Гинзбург утверждал, что, исходя из расчетов Планка, мы можем представить Вселенную, состоящей из частиц величиной 10–33 м. То есть наша Вселенная – это квантовая Вселенная!

Однако приборы и сенсоры, которыми мы усиливаем свои органы чувств, позволяют выделить частицы и их характеристики величиной до 10–16 м. А это значит, что наши знания о Вселенной далеко не полны.

Квантовая физика, собственно, и называется «квантовой», потому что изучает наше мироздание на микроуровне, на уровне квантов.

В 1905 году Эйнштейн доказал, что свет не только испускается и поглощается, но и распространяется квантами, то есть поток света состоит из квантов энергии, а проще – из квантов света. Световые кванты стали называть фотонами.

По поводу фотона есть и другая точка зрения. Доктор технических наук, академик РАЕН В. А. Ацюковский утверждает, что фотон – не электромагнитная волна! Такое утверждение было сделано после тщательного теоретического и экспериментального исследований эфира. Ацюковский пишет: «Почему фотоны проникают в морскую воду не так, как электромагнитная волна? Потому что они имеют разную структуру. В электромагнитной волне каждый полупериод существует сам по себе, поскольку движения эфира в каждом полупериоде направлены по-разному. В фотоне же потоки эфира переходят из одного ряда вихрей в другой, нигде не прерываясь. Весь фотон – единая энергетическая структура… Фотон – не электромагнитная волна, вот что отсюда вытекает» [2].

Эксперименты показали, что: фотон – это элементарная частица с нулевой массой покоя и положительной энергией. Что значит – «с нулевой массой покоя»? Это значит, что свет не существует в остановленном виде.

Однако русским ученым-физикам, работающим в Бостоне на базе астрофизической лаборатории Гарвардского университета, удалось остановить луч света. Правда, всего лишь на долю секунды, но остановили!

Как сообщил Михаил Лукин, выпускник Московского физико-технического института, ныне руководитель лаборатории в Гарвардском университете, им удалось не только сохранить в рубидиевой среде, помещенной в магнитное поле, информацию об импульсе, выпущенном из лазера, но потом и восстановить ее в полном объеме, после чего импульс продолжил движение со скоростью в 297 000 км/с. Пока в астрофизической лаборатории Гарварда Михаилу Лукину и его американскому коллеге Рональду Уолсуорду удается останавливать свет только на одну тысячную секунды [3].

А можно ли «заморозить» световой луч на время большее, чем одна тысячная секунды?

«Законов, запрещающих это, нет, – подчеркнул заведующий лабораторией лазерной спектроскопии Института спектроскопии РАН профессор Владилен Летохов. – И я не могу утверждать, что это в принципе невозможно. Квантовая физика это не запрещает».

А что вообще такое элементарные частицы? Когда появился этот термин, под элементарными частицами понимали первичные, далее уже неделимые частицы, из которых состоит вся материя. А потом оказалось, что эти, так сказать, неделимые частицы делятся. И в современной физике термин «элементарные частицы» используется для наименования большой группы мельчайших частиц, которые не являются атомами или атомными ядрами (за исключением протона, который в гордом одиночестве представляет собой ядро водорода).

Мы с вами используем понятие «элементарные частицы» в качестве общего названия субъядерных частиц.

Познакомившись поближе с планетарной моделью атома, согласно которой ядро играет роль Солнца, а электроны – роль планет, вращающихся вокруг него, ученые сразу же столкнулись с проблемой. Какой?

Дело в том, что вращающийся вокруг атомного ядра электрон, двигаясь ускоренно по орбите, по всем классическим законам должен излучать электромагнитные волны (свет) и терять энергию. В результате он неминуемо должен упасть на ядро, что означало бы гибель атома. Но атом стабилен, электроны свет не излучают и на ядро не падают. Почему?

Рассматривая принцип работы лазера, мы познакомились с постулатами Бора по поводу стационарных орбит, по которым движутся электроны в атоме. Излучение или поглощение энергии происходит только при переходе электрона с одной орбиты на другую.

Напомним, что, стремясь объяснить устойчивость атома в рамках модели Резерфорда, Нильс Бор в 1913 году предположил, что у атома есть такие стационарные орбиты, находясь на которых электрон не излучает фотонов (света). Разные орбиты соответствуют разным уровням энергии. Когда электрон переходит с одной орбиты на другую, он или излучает, или поглощает один фотон. Если переход происходит с орбиты высокого уровня энергии на орбиту низкого уровня, фотон излучается. И наоборот [4].

Надо сказать, что существование уровней энергии в атомах было подтверждено опытами Франка – Герца в 1913–1914 годах.

Тут же встал вопрос: почему электрон, двигаясь ускоренно по орбите, не излучает энергии?

Чтобы понять это, рассмотрим такой пример.

Возьмем сосуд с насыщенным солевым раствором и охладим его. В некоторой точке сосуда выпадет кристаллик соли. Теперь нагреем сосуд, и кристаллик растворится. Снова охладим, опять выпадет кристаллик, но в другом месте. Продолжим эту процедуру и снимем весь процесс на кинопленку. А потом посмотрим полученный фильм на достаточно большой скорости. Что мы увидим? Мы увидим, как кристаллик движется по сосуду, выписывая немыслимые коленца. А на самом деле никакого механического движения он не совершает.

Оказывается, точно так же ведет себя электрон, находящийся на стационарной орбите. Он то «растворяется» в собственном электромагнитном поле, то «конденсируется» из него и занимает на орбите различные положения. Но при этом он не совершает механического движения, вот и не излучает энергии [5].

Странно? Конечно, странно! Так может вести себя не частица, а волна. Но электрон же частица. Во всяком случае, считался на то время частицей. Как частица может проявлять свойства волны? Что это еще за «волны материи»?

Дуальность

Дальнейшие результаты изучения света потрясли научную общественность. В 1922 году американский физик Комптон экспериментально доказал, что свет обладает волновыми и корпускулярными свойствами, то есть является одновременно и волной, и частицей. А эксперименты с рассеянием света электронами подтвердили наличие у электронов волновых свойств.

Это дало возможность французскому физику Луи де Бройлю в 1924 году выдвинуть идею о волновых свойствах материи, за разработку которой в 1929 году он был удостоен Нобелевской премии по физике. Оригинальная гипотеза де Бройля заключалась в том, что не только фотоны, но и все элементарные частицы обладают волновыми свойствами. Причем длина волны де Бройля тем меньше, чем больше масса частицы и ее скорость.

Например, частице массой 1 грамм, движущейся со скоростью 1 м/с, соответствует волна де Бройля с длиной 10–18 А (ангстрем). В свою очередь, 1 А = 10–10 м. А это лежит за пределами доступной наблюдателю области. Именно поэтому в механике макроскопических тел волновые свойства существенной роли не играют. Иное дело, когда речь идет о мире элементарных частиц.

Позднее гипотеза де Бройля была подтверждена экспериментально: на уровне элементарных частиц материя имеет двойственный аспект, который проявляется и как частицы, и как волны.

Поскольку ситуация с электроном в атоме непредсказуема, ибо никогда не знаешь, где он в следующий раз «выпадет в осадок», то термин «волна материи одиночного электрона» по предположению Макса Борна был заменен на термин «волна вероятности». Для электрона, как и для всех элементарных частиц, обладающих свойствами волны, теряет смысл понятие траектории, ибо нельзя одновременно задавать координату и скорость движения.

И, следовательно, ньютоновское описание движения частиц в микромире становится невозможным. По этой причине пришлось отказаться от понятия «силы» как мерила взаимодействия. Какие уж тут «силы», если взаимодействующие частицы не связаны между собой силовыми связями, а просто обмениваются фотонами, примерно как баскетболисты мячом на площадке, которую не могут покинуть, пока идет игра (своеобразное взаимное притяжение).

Двойственность материи буквально ошарашила ученых. Ведь частица имеет более или менее определенное местоположение, а волна в то же самое время распространяется в пространстве. Положение частицы в каждый момент времени определяется заданием трех ее координат, а для описания, например, электромагнитного поля в любой момент времени требуется задание напряженностей этих полей в каждой точке пространства. То есть требуется задание бесконечного числа величин.

Словом, противоречие между свойствами волн и частиц поставило под вопрос основу механистического мировоззрения – понятие реальности материи.

Парадоксальные результаты экспериментов вызывали в среде ученых настоящий шок.

В одной из статей В. Гейзенберг писал: «Бурная реакция ученых на последние открытия современной физики легко объяснима: они сотрясают основы этой науки, и она, похоже, начинает терять почву под ногами».

Эйнштейн был потрясен не меньше, столкнувшись впервые с миром атома. Он писал в своей автобиографии: «Все мои попытки объяснить эти новые открытия были абсолютно безуспешны. Это напоминало ситуацию, когда почва уходит из-под ног и не на что опереться» [6].

В этих словах великих физиков заключена самая суть: почвы-то под ногами действительно нет! Нет той самой тверди, которая всегда служила нам, людям, опорой. Какая уж тут твердь, если материя в любом материальном объекте составляет менее 1 %!

А что же есть?

Современный ученый, один из руководителей Института биосферы РАН, академик Ф. Я. Шипунов говорит: «За пределами элементарных частиц – нейтронов, позитронов и других – материального мира уже не существует, остается лишь их волновая составляющая. Получается, что Вселенная состоит из некой субстанции, которую никак нельзя назвать материальной. Это духовная субстанция, имеющая волновую природу. Именно она и строит весь физический мир» [7].

Оказывается, есть духовная субстанция волновой природы. Наша Вселенная – это волновой мир. Возникла необходимость изучения волнового мира, который строит наш физический мир и управляет им.

О волновой механике

Поскольку методы классической физики оказались непригодны для исследования частиц-волн, потребовалось создание новой науки, в основу которой должна была лечь концепция де Бройля. Эта новая наука – «волновая механика» – появилась благодаря австрийскому физику Э. Шредингеру и немецкому физику В. Гейзенбергу.

Волновое уравнение Шредингера

В 1926 году Шредингер опубликовал знаменитое уравнение, носящее его имя. Волновое уравнение Шредингера играет в квантовой механике такую же фундаментальную роль, как уравнение движения Ньютона в классической механике [4]. Уравнение Шредингера является математическим выражением фундаментального свойства микрочастиц, которые одновременно представляют собой волны. Данное фундаментальное свойство называется «корпускулярно-волновой дуализм».

Этот дуализм оказался очень крепким орешком. Шредингер подгоночным путем ввел в свое уравнение некую неизвестную функцию, назвав ее «волновой функцией». Ее еще иногда называют «пси-функцией» или «вектором состояния».

Надо сказать, что такие подгоночные подходы (их еще называют феноменологическими) правомерны и используются для систематизации данных в тех областях физики, где фундаментальные теории еще не созданы.

Все физические теории можно разделить на три больших класса: фундаментальные, феноменологические (или конструктивные) и полуфеноменологические. Фундаментальная теория базируется на физических принципах, имеющих всеобщую приложимость (конечно, в тех рамках, в которых эти принципы справедливы). Теоретические предсказания явлений, сделанные на основании точных решений фундаментальных уравнений, полностью подтверждаются экспериментальными фактами.

Феноменологические теории возникают в физике под давлением экспериментальных фактов и представляют собой скорее метод для систематизации данных опыта в тех областях физики, где фундаментальные теории еще не созданы. «Потенциалы взаимодействия в феноменологических теориях подбираются искусственным путем так, чтобы удовлетворительно описать феноменологические взаимодействия. Как правило, в феноменологические потенциалы входит одна или несколько подгоночных констант, значения которых определяются путем согласования теории с данными эксперимента. Феноменологические теории обладают слабой предсказательной силой (образно говоря, предсказывают на расстоянии вытянутой руки) и не раскрывают истинной природы физического явления» [8].

 

В частности, квантовая механика обрела феноменологический (подгоночный) характер не при ее создании, а с появлением вероятностной интерпретации волновой функции в уравнении Шредингера (пси-функции). Именно феноменологическим путем Шредингер в свое время ввел в свое уравнение пси-функцию, рассматривая ее как материальное поле.

В теории физического вакуума, опубликованной в конце ХХ века, академик Г. И. Шипов строго показал, что пси-функция имеет смысл торсионного поля – поля, порождаемого классическим спином. Причем в работах Г. И. Шипова торсионные поля вводятся не феноменологически, на строгом фундаментальном уровне [8].

С помощью волновой функции можно с успехом описывать все электромагнитные, гравитационные, ядерные и другие физические явления. Есть только одно маленькое но. Волновая функция неизвестна.

Шредингер рассматривал волновую функцию как некое пока неизвестное материальное поле, которое объединяет все известные физические взаимодействия. Он надеялся, что когда будут созданы фундаментальные теории, эта волновая функция будет найдена.

Волновая функция полностью описывает состояние микрообъекта (электрона, протона, атома). Но чтобы определить состояние микрообъекта в любой момент времени, необходимо знать волновую функцию в начальный момент времени.

Поскольку волновая функция неизвестна, решения уравнения Шредингера прямого физического смысла не имеют. Смысл имеет квадрат волновой функции, который представляет собой вероятность состояния волновой системы. Например, решили уравнение Шредингера, нашли квадрат волновой функции и определили, что вероятность нахождения электрона в момент времени t в точке пространства с координатами xyz составляет 0,6. Для простоты скажем так: 60 % за то, что электрон в такой-то момент времени находится в такой-то точке пространства.

А это означает, что четкий ответ на вопрос, где находится электрон, невозможен. Он может находиться здесь, а может и там, то есть в любом месте, где квадрат волновой функции не равен нулю. Как кристаллик соли, который может выпасть в осадок где угодно.

Физическое описание микроскопических объектов становится неопределенным.

Закономерности, которые проявляются при случайных событиях, описываются с помощью теории вероятности, которая называет эти возможности просто «вероятностями». Решение уравнения Шредингера позволяет получить значение вероятностей.

Вероятностный характер результатов экспериментов означает, что при проведении серии одинаковых опытов над одинаковыми системами каждый раз будут получаться разные результаты. Однако некоторые значения будут появляться чаще, то есть будут более вероятными.

Словом, никогда точно не скажешь, как поведет себя электрон или фотон, да и вообще любая элементарная частица.

Рассмотрим простейший опыт по распространению света. На пути пучка света, который представляет собой поток фотонов, ставится прозрачная пластина. Часть фотонов проходит через пластину, часть отражается от нее.

Снова повторили опыт, но усложнили его, а именно: на пути отраженного потока фотонов поставили точно такую же пластину, как первая, от которой эти фотоны уже отразились. Поток фотонов, отразившийся от первой пластины, разделился: часть фотонов отразилась от второй пластины, а часть прошла через нее.

Что же получается? Некоторые фотоны почему-то «не захотели» проходить через первую пластину, а потом «передумали» и прошли через точно такую же вторую пластину? Так что ли?

Именно так!

Одинаковые частицы в одинаковых условиях ведут себя по-разному. Поведение фотона при встрече с пластиной непредсказуемо однозначно. Отражение фотона от пластины или прохождение через нее – случайные события. Данный фотон может пройти через пластину, а может и отразиться.

Вот так и внутри атома материя не существует в определенных местах, а, скорее, «может существовать»; атомные явления не происходят в определенных местах и определенным образом наверняка, а, скорее, «могут происходить». Все законы атомной физики выражаются в терминах вероятностей.

И если классическая физика может предсказать точные результаты, то квантовая физика может предсказать только вероятности различных процессов. А это означает, что в субатомном мире, мире квантовой реальности, отсутствует причинность и царит полнейшая неопределенность. Успех и итог экспериментов в этом мире можно только предсказать с определенной вероятностью.

Поскольку наш курс научно-эзотерический, стоит заметить, что отсутствие причинности в Тонком мире ставит под сомнение неотвратимость закона кармы!

Стоит особо подчеркнуть, что вероятность в квантовой теории следует воспринимать не как элемент нашего незнания или расчета на удачу, на которую рассчитывает, например, игрок в азартные игры, а как основополагающее свойство атомной действительности, управляющей ходом всех процессов и даже существованием материи.

Но вероятностный характер квантовых процессов оказался далеко не единственной проблемой, которая легла на плечи ученых.

Принцип неопределенности Гейзенберга

Когда речь идет о материальной частице, то определенному значению ее координаты соответствуют точные значения ее скорости и импульса. Например, скорость и импульс летящего камня можно точно рассчитать в любой точке его траектории.

В квантовой теории все иначе. Поскольку электрон можно лишь приближенно рассматривать как материальную точку, его координаты и импульсы также можно рассматривать лишь приближенно. И одновременное определение значения динамических переменных оказалось невозможным: если исследователь определяет местонахождение частицы, то она просто не имеет определенного импульса, и наоборот, если он определяет импульс, то частица не имеет точного местонахождения. И чем точнее мы определим импульс, тем менее определенно значение местонахождения частицы.

Что с нее возьмешь! Она же не просто частица, она еще и волна! То есть определить точные параметры, характеризующие одновременно частицу и волну, невозможно.

Эту особенность квантовой физики подметил немецкий ученый Вернер Гейзенберг и сформулировал так называемый принцип неопределенности, который гласит, что, во-первых, ни один квантовый объект не может пребывать в покое, и, во-вторых, сопряженные переменные не могут быть одновременно измерены с определенной точностью. Это касается и скорости, и положения какой-либо частицы или тела.

Уравнение Шредингера и принцип Гейзенберга легли в основу теории волновой физики.

Отсутствие причинности в микромире привело к тому, что мир, описываемый физикой, оказался разделенным на две части. В макромире, с которым мы постоянно имеем дело, действует четкая определенность, последовательность и строгая причинность реальных событий. Ее легко продемонстрировать на простейшем примере: если бильярдный шар ударится под определенным углом о стенку бильярдного стола, то он отскочит обратно под тем же углом. Действие равно противодействию, или что посеял, то и пожнешь.

В субатомной мире, в мире квантовой реальности, все наоборот: отсутствие причинности и полная неопределенность. Заменим бильярдный шар электроном, а стенку стола – атомом. Каждое столкновение электрона с атомом имело бы непредвиденные последствия: электрон отскакивал бы от атома в бесчисленное множество возможных сторон.

Такое положение дел очень напоминает практические результаты исследований паранормальных явлений, когда сознание человека играет активную роль в протекании и разнообразных проявлениях этих процессов. Никогда нет уверенности в выполнении паранормального эксперимента: вчера получилось, а сегодня неизвестно, получится ли.

Мы, конечно, можем рассчитать вероятность нужного нам результата, но электрону совершенно наплевать на наши расчеты. Как говорит пословица: «Человек предполагает, а Бог располагает».

Купите 3 книги одновременно и выберите четвёртую в подарок!

Чтобы воспользоваться акцией, добавьте нужные книги в корзину. Сделать это можно на странице каждой книги, либо в общем списке:

  1. Нажмите на многоточие
    рядом с книгой
  2. Выберите пункт
    «Добавить в корзину»