Бесплатно

Bacteria in Daily Life

Текст
iOSAndroidWindows Phone
Куда отправить ссылку на приложение?
Не закрывайте это окно, пока не введёте код в мобильном устройстве
ПовторитьСсылка отправлена

По требованию правообладателя эта книга недоступна для скачивания в виде файла.

Однако вы можете читать её в наших мобильных приложениях (даже без подключения к сети интернет) и онлайн на сайте ЛитРес.

Отметить прочитанной
Шрифт:Меньше АаБольше Аа

SUNSHINE AND LIFE

It was nearly a century ago that a German physician incidentally wrote, "Our houses, hospitals, and infirmaries will, without doubt, some day be like hot-houses, so arranged that the light, even that of the moon and stars, is permitted to penetrate without let or hindrance." This was spoken long before the world of micro-organisms had been discovered, but curiously has found an echo in the writings of a distinguished bacteriological chemist in recent years. "Laissons donc entrer largement partout l'air et le soleil," writes M. Duclaux; "c'est là une maxime bien ancienne, mais si les mots sont vieux l'idée qu'ils revêtent est nouvelle." The interpretation of this ancient maxim is indeed very modern, and we must turn to the investigations made within the past few years to learn with what justification M. Duclaux thus expresses himself, for it is only comparatively recently that we have learnt the novel fact that sunshine, whilst essential to green plant life, is by no means indispensable to the most primitive forms of vegetable existence with which we are acquainted, i. e. bacteria. In fact, we have found out that if we wish to keep our microbial nursery in a healthy, flourishing condition, we must carefully banish all sources of light from our cultivations, and that a dark cupboard is one of the essential requisites of a bacteriological laboratory.

That light had a deleterious effect upon micro-organisms was first discovered in this country by Messrs. Downes and Blunt, and their investigations led Professor Tyndall to carry out some experiments on the Alps, in which he showed that flasks containing nutritive solutions and infected with bacteria when exposed in the sunshine for twenty-four hours remained unaltered, whilst similar vessels kept in the shade became turbid, showing that in these the growth of bacteria had not been arrested. In these experiments mixtures of micro-organisms were employed, and the interest of the French investigations which followed lies in the use of particular microbes – notably the anthrax bacillus and its spores,4 Roux demonstrating very conclusively that the bacillar form was far more sensitive to light than the spore form, while Momont, in a classical series of experiments, not only fully confirmed these observations, but showed also that the intensity of the action of light depends to a very large extent on the environment of the organism. Thus, if broth containing anthrax bacilli is placed in the sunshine, the latter are destroyed in from two to two and a half hours, whilst if blood containing these organisms is similarly exposed, their destruction is only effected after from twelve to fourteen hours of sunshine. This difference in resistance to insolation was also observed in the case of dried blood and broth respectively – eight hours' exposure killing the bacilli in the former, whilst five hours sufficed in the latter.

This is an instance of the apparent idiosyncrasies possessed by micro-organisms, which render their study at once so fascinating and so difficult, and it is through being thus constantly confronted with what, in our ignorance, we mentally designate as "whims," that we can hardly resist the impression of these tiny forms of life being endowed with individual powers of discernment and discrimination. Indeed, these powers of selection and judgment are in certain cases so delicately adjusted that in some of the modern chemical laboratories micro-organisms have become indispensable adjuncts, and by their means new substances have been prepared and fresh contributions made to the science of chemistry.

Momont is not able to give any satisfactory explanation of this different behaviour of the anthrax bacilli in these two media, but goes on to show that yet another factor plays an important part during insolation.

In the above experiments air was allowed to gain access to the vessels containing the broth, but if the precaution be taken of first removing the air and then exposing them to the sunshine, a very different result was obtained, for instead of the anthrax bacilli dying in from two to two and a half hours, they were found to be still alive after fifty hours' insolation. There appears, therefore, to be no doubt that sunshine in some way or other endows atmospheric oxygen with destructive power over the living protoplasm of the bacterial cells; indeed, there is considerable reason to believe that the bactericidal effect is due to the generation of peroxide of hydrogen, which is well known to possess powerfully antiseptic properties.

Numerous investigations have been also made to determine whether all the rays of the spectrum are equally responsible for the bactericidal action of light.

Geisler's work in St. Petersburg is especially instructive in this respect, for by decomposing with a prism the sun's light, as well as that emitted by a 1,000-candle-power electric lamp into their constituent rays, he was able to compare the different effects produced by the separate individual rays of both these sources of light.

The organism selected was the typhoid bacillus, and it was found that its growth was retarded in all parts of the two spectra excepting in the red, and that the intensity of the retardation was increased in passing from the red towards the ultraviolet end of the spectrum, where it was most pronounced of all.

But whereas from two to three hours of sunshine were sufficient to produce a most markedly deleterious effect upon the typhoid bacillus, a similar result was only obtained by six hours' exposure to the electric light.

Dr. Kirstein, of the University of Giessen, in the course of some experiments he made to ascertain how long different varieties of bacteria can exist when they obtain access to the air in the form of fine spray, and subsequently, as happens under ordinary circumstances, get dried up, noted also the effect upon their vitality of exposure in daylight and darkness respectively. For this purpose the apparatus in which the experiments were carried out was in some cases kept in a dark cellar, whilst in others it was left standing in the laboratory in ordinary daylight.

Delicate bacteria, such as the fowl-cholera bacillus, it was found, could not survive exposure to daylight in this dried-up condition for more than ten hours, but when they were put in the dark their lease of life was prolonged for more than twice that length of time; whilst as regards varieties of tougher constitution, such as diphtheria and tubercle bacilli, whose initial vitality was very considerably greater under these adverse circumstances, confinement in the cellar enabled them to exist more than four times as long as they were able to in the healthy atmosphere of the well-lighted laboratory.

Dr. Onorato, of the University of Genoa, has recently shown, also, that influenza bacilli are entirely destroyed after the sun has been shining on them continuously for three and a half hours.

Such facts indicate how essential to health is plenty of light in our dwelling-rooms, and how important it is that in the designing of houses the trapping of the maximum amount of sunshine should be very carefully considered. Architects might indeed with advantage be compelled to include in their qualifications a knowledge of the fundamental facts of sanitary science. The fashion of shutting the sunshine out by barriers of blinds and curtains drawn across the windows, a practice which seems to be almost entirely independent of the habitual gloom of the surroundings or general scarcity of sunshine, might possibly be modified were it but known that by thus excluding light we are conferring an inestimable benefit upon the members of the microbial community, which may at any moment comprise some of the subtlest and most dangerous antagonists with which we have to reckon in the struggle for existence.

From a hygienic point of view, also, the question of the potency of sunshine in regard to the bacteria present in water is both important and interesting, for it is to water at the present time that we look for the dissemination of some of the most dreaded zymotic diseases.

Comparatively little has been done in this direction, but those results which have been obtained are exceedingly suggestive. Professor Buchner has published some preliminary experiments which he made with particular micro-organisms. In these investigations boiled tap-water was used to ensure the absence of all bacteria except those which were subsequently introduced, and, whilst some of the vessels were exposed to the sunshine, others were simultaneously preserved in the dark. It was found that typhoid, cholera, and various other bacilli were most deleteriously affected by insolation. Perhaps an example will best serve to illustrate the nature of the results obtained. Some boiled water contained in a flask was inoculated with an immense number of a bacillus, closely resembling the typhoid organism, normally present in the body and frequently found in water, the bacillus coli communis. So many were introduced that nearly one hundred thousand individuals were present in every twenty drops of the water. This flask then, containing water so densely sown with microbes, was placed in the sunshine for one hour, whilst another and similar flask was kept during the same time in the dark. On being subsequently examined it was ascertained that whereas a slight increase in the number of bacilli had taken place in the "dark" flask, in the insolated flask absolutely no living organisms whatever were present.

 

Professor Percy Frankland has also investigated the action of sunshine on micro-organisms in water, and in one of his reports to the Water Research Committee of the Royal Society an account is given of the effect of insolation on the vitality of the spores of anthrax in Thames water. These experiments show again what an important influence the surroundings of the organism have on the bactericidal potency of the sun's rays, for the remarkable fact was established that when immersed in water anthrax spores are far less prejudicially affected by sunlight than when exposed in ordinary culture materials such as broth or gelatine. Thus it was only after one hundred and fifty-one hours' insolation in Thames water that these spores were entirely destroyed, whilst a few hours' exposure in the usual culture media is generally sufficient for their annihilation. In water not subjected to insolation anthrax spores were found to retain their vitality for several months.

In case the reader should be tempted to compare these results with those obtained by Buchner, it must be borne in mind that whereas those experiments were made with bacilli, these were directed to determine the behaviour of spores in water, which are some of the hardiest forms of living matter with which we are acquainted. This alone would sufficiently explain the results obtained, whilst each variety of microbe may be, and doubtless is, differently affected during insolation.

We know now that a remarkable improvement takes place in the bacterial condition of water during its prolonged storage in reservoirs, and although, no doubt, the processes of sedimentation which have been shown to take place during this period of repose are to a large extent responsible for the diminution in the number of bacteria present, yet it is also highly probable that insolation assists considerably in this improvement, at any rate, in the upper layers of the water. As the depth of the water increases the action of light is necessarily diminished. Indeed, exact experiments conducted in the Lake of Geneva to ascertain by means of photographic plates the depth to which the sun's rays penetrate showed that they did not reach beyond five hundred and fifty-three feet, at which depth the intensity of the light is equal to that which is ordinarily observed on a clear but moonless night, so that long before that their bactericidal potency would cease.

It is the more important that this limit to the powers of sunshine in water should be duly recognised, inasmuch as solar enthusiasts, when first the fact became known, rashly jumped at the convenient hypothesis, based on very slender experimental evidence, that the sun's rays were possessed of such omniscient power to slay microbes, that they might safely be relied upon to banish all noxious organisms from our streams, and that local authorities might therefore comfortably and without any qualms of conscience turn sewage into our rivers and so dispense with the cost and labour of its treatment and purification.

This was actually suggested in a proposal made for dealing with the sewage of the city of Cologne. Fortunately further investigations have removed these most erroneous and dangerous ideas; and whilst all due credit may be given to sunshine for what it really does accomplish in the destruction of bacteria in water, there is now no doubt as to its potency being confined to the superficial layers of water.

Perhaps Dr. Procacci's experiments will most clearly convey some idea of this limitation, for he made a special study of this particular phenomenon. Some drain water, containing, of course, an abundance of microbial life, was placed in cylindrical glass vessels, and only the perpendicular rays of the sun were allowed to play upon it. The column of water was about two feet high, and whilst a bacteriological examination at the commencement of the research showed that about two thousand microbes were present in every twenty drops of water taken from the surface, centre, and bottom of the vessel respectively, after three hours' sunshine only nine and ten were found in the surface and centre portions of the water, whilst at the bottom the numbers remained practically unchanged. Professor Buchner, of Munich, demonstrated the same impotence of the sun's rays to destroy bacteria much beneath the surface of water, in some ingenious experiments he made in the Starnberger See, near Munich. He lowered glass dishes containing jelly thickly sown with typhoid bacilli to different depths in the water during bright sunshine; those kept at a depth of about five feet subsequently showed no sign of life, whilst those immersed about ten feet developed abundant growths; in both cases the exposure was prolonged over four and a half hours.

In our own rivers Thames and Lea frequently about twenty times more microbes have been found in the winter than in the summer months, but it would be extremely rash to therefore infer that the comparative poverty of bacterial life was due to the greater potency of the sun's rays in the summer than in the winter. Doubtless it may contribute to this beneficial result; but we know as a matter of fact that, in the summer, these rivers receive a large proportion of spring water, which is comparatively poor in microbes, and that this factor also must not be ignored in discussing the improved bacterial quality of these waters at this season of the year.

Another point which must be taken into consideration in regard to the effective insolation of water is its chemical composition, for it has been shown5 that the action of sunshine in destroying germs in water is very considerably increased when common salt is added to the water, and this opens up a wide field for experimental inquiry before we can accept sunshine as a reliable agent in the purification of water.

Again, we must remember that a great deal depends upon the condition of the microbe itself. If it is present in the spore or hardy form, then considerably longer will be required for its annihilation. This fact has been abundantly shown in the case of anthrax, which in the condition of spores will retain its vitality in water flooded with sunshine for considerably upwards of a hundred hours, the bacilli being far more easily destroyed. We must also bear in mind that the individual vitality of the microbe is an important factor in determining its chance of survival; if it is in a healthy, vigorous condition, it will resist the lethal action of sunshine for considerably longer than when its vitality has been already reduced by adverse surroundings.

It is, therefore, sufficiently obvious that the power of insolation to bacterially purify water is by no means easy of estimation, and that numerous and very varied factors have to be taken into account when we attempt to endow it with any measure of practical hygienic importance.

In connection with the vitality of anthrax germs in water, which has afforded material for so many laboratory investigations, it is of interest to consider what chance exists of anthrax being communicated by water. Until a few years ago, as far as I am aware, no instance had been recorded of anthrax having been actually communicated by water, until an outbreak of anthrax on a farm in the south of Russia was distinctly traced by a skilled bacteriologist to the use of water from a particular well, in the sediment of which the bacillus of anthrax was discovered.

Anthrax bacilli have also been detected in the water of the River Illinois in the vicinity of Chicago, one of the chief sources of pollution of which is the slaughtering of cattle and the discharge of their offal into the river.

The likelihood of such contamination taking place through the drainage of soil makes it of importance to ascertain what may become of the bacilli of anthrax derived from the bodies of animals which have died of this disease, and whose carcasses have been buried and not burnt.

The anthrax bacillus cannot produce the hardy spore form within the bodies of animals, but it does outside. Now it has been shown that the bacilli of anthrax taken from the blood of an animal dead of anthrax are destroyed rapidly in ordinary River Thames water, for example, but that if the temperature of the water to which they gain access is somewhat higher than usual, such bacilli are able to sporulate or produce spores in the water, and in that hardy form can retain their vitality and virulence for several months.

That anthrax bacilli can produce spores in water under certain conditions has not hitherto been dwelt upon in discussing the question of their vitality in water, and it is of obvious importance in connection with the action of sunshine on anthrax germs in water, knowing as we now do the very different manner in which the spores and bacilli respectively behave when under the influence of the sun's rays.

It was not, perhaps, unnatural that rash assumptions as to the efficacy of sunshine should have been readily accepted when such remarkable feats performed on microbes by sunshine were being continually put forward.

Thus it has been found that insolation, even when it does not destroy, may effect profound changes in the physiological character of certain micro-organisms.

Dr. Lohmann, of Rostock, discovered that some hours' exposure to bright sunshine entirely destroys yeast cells, whilst even feeble and intermittent sunshine is capable of paralysing them, and that they only recover their vitality when removed from this obnoxious influence. This recuperative power is not, however, shared equally by all varieties of yeast, some possessing it in a far greater degree than others. Dr. Lohmann also found that yeast cells, after being exposed to sunshine, assumed a shrunken and distorted appearance, showing that insolation had produced a striking physiological effect upon the structure of these cells.

Professor Hansen published some years ago a most interesting memoir on some of the characteristic features of the moulds which are to be found on manure heaps, in which he records how light exerts a very important influence on the manner in which the spore or fruit of these lowly vegetables is set free or distributed. All the various phases in the fructification process of some of these moulds were carefully watched by Dr. Hansen. He kept his caged specimens near a window with an eastern aspect, and he states that in the first instance the stalks inclined towards the light, but that afterwards they assumed an upright position. Darkness was nearly always chosen for the liberation of the spores, but in a few instances a small number were released during the daytime, and it was noticed that when this did occur they were invariably discharged on the side away from the source of light. In various other ways he confirmed this interesting observation, and found that the fruit of the mould was invariably discharged in the opposite direction to that in which the stalk had previously inclined under the influence of light. The force with which the spores were discharged varied very considerably, sometimes being cast to a distance of four inches or more from the stalk, and sometimes being found close to and even on the stalk.

The manner in which sunshine may also modify the pigment-producing powers of micro-organisms is remarkable.

Many microbes are able to elaborate when grown on various culture media, such as gelatine or slices of potato, most brilliant and beautiful pigments ranging from intense blood-red to the most delicate shades of pink, and embracing every gradation of yellow, as well as browns, greens, and violets. Now it has been found that some of these pigment-producing bacteria, when exposed to sunshine on these nutritive materials, fail to exhibit their characteristic colour, although the duration of insolation may not have sufficed to destroy their actual vitality. One of these organisms originally obtained from water has been specially studied in this respect by M. Laurent. If slices of potato are streaked with a small number of this particular bacillus (bacille rouge de Kiel) a magnificent patch of blood-red colour makes its appearance in the course of a day or two, but if, on the other hand, similar slices of potato are exposed to three hours' sunshine, a colourless growth subsequently develops, except where here and there a few isolated spots of pale pink are visible. When the insolation is prolonged for five hours nothing whatever appears on the potato, the bacilli having been entirely destroyed. But this is not all. M. Laurent found that if he took some of the colourless growth and inoculated it on to potatoes he obtained again, but without insolation, a colourless vegetation – in fact, three hours' insolation had so modified the physiological character of the bacillus that a new race had been generated, a race deprived of its power of producing this red pigment. In what numerous directions the character of microbes may be and are being modified, even by simple exposure to sunshine, opens up a wide field for speculation and research, whilst the tractability of these minute and most primitive forms of life, if we only approach their education with sufficient insight and patience, may enable us to make them serve where they now are masters.

 

The remarkable discoveries on the modification of the disease-producing properties of certain bacteria by sunshine may perhaps encourage the idea that we are making some progress towards the attainment of this desirable millennium. That diminution of the virulence or disease-producing power of such deadly microbes as those of cholera, anthrax, and tuberculosis can be brought about through simple exposure to the sun's rays seems almost inconceivable, yet it has been discovered that by placing the cholera bacillus, for example, in the sunshine its virulent character undergoes such a profound modification that it is actually reduced to the condition of a vaccine, and may be employed to protect animals from infection with its still virulent brethren. Yet this is what has been undoubtedly shown by Dr. Palermo in very carefully conducted investigations. He was, moreover, able to indicate, within a very narrow margin, the precise amount of insolation necessary to bring about this result: for if the cholera cultures were only exposed for three hours, their toxic properties were not reduced to the condition of vaccine; but if the insolation was continued for three and a half hours up to four and a half hours, they became endowed with the requisite immunising properties, and animals treated first with the so-called sunshine-cholera-vaccine were able subsequently to withstand otherwise fatal doses of virulent cholera cultures. Dr. Palermo also found that, besides producing this subtle modification in the character of cholera bacilli, sunshine exerted a remarkable physiological change in these organisms, for when examined under the microscope they no longer exhibited their typical activity, having been deprived of all powers of movement, whilst those kept during the same length of time in the dark had not abated one jot of their customary mobility.

But sunshine not only controls in this wonderful manner the action of the living bacillus, but it also operates upon the products elaborated by disease organisms. Thus the microbe producing lock-jaw or tetanus may be grown in broth, and the latter may be subsequently passed through a porcelain or a Berkefeld filter, so that the resulting liquid is entirely deprived of all germ life. This tetanus-filtrate, as it is called, is endowed with very powerful toxic properties, and it will retain its lethal action even when kept for upwards of three hundred days, providing it is screened from all light; but place such filtrates in diffused light, and they lose their poisonous properties, requiring, however, upwards of ten weeks to become entirely harmless; if, on the other hand, they be exposed to sunshine, they are completely deprived of their toxic character in from fifteen to eighteen hours. Again, as little as five hours' sunshine is sufficient to greatly modify the toxic action of diphtheria cultures. It is of interest also to note that even the venom of the rattlesnake, that most potent of all poisons, cannot emerge unscathed from an exposure to sunshine maintained during a fortnight.

Interesting as all these isolated observations are, they indicate what an immense amount yet remains to be done before we can hope to have any connected conception of the mechanism, so to speak, of insolation. At present there is too large an allowance, which we are compelled to make, for the unknown to permit of our adequately manipulating this marvellous agency in relation to bacteriological problems. But who shall say what part has been, and is being still, played by sunshine in determining the individual character of microbes, operating as it has done from time immemorial upon countless generations of these minute germs of life?

The problem of insolation has been attacked from an entirely novel point of view by Dr. Masella, who has endeavoured to find out whether sunshine plays any part in the predisposition of animal life to infection.

Now sunshine has long been credited with possessing therapeutic powers, and, indeed, traditions of cures effected by the ancients by means of insolation have been treasured up and handed down to the present day. Even as late as the beginning of the present century we may read of a French physician seriously recording his claim to have cured a dropsical patient within two weeks by placing him daily for several hours in the sunshine, and many medical journals of recent years contain communications on the beneficial results derived from the use of sunshine in the treatment of various diseases. It seems curious, therefore, that whilst so much has been done to test the action of light on disease microbes in artificial surroundings, such as are to be found in laboratory experiments, hardly any investigations have been made to try and define more precisely how sunshine may affect their pathogenic action within the animal system. Dr. Masella's researches, undertaken with the express object of, if possible, elucidating this question, are therefore of special interest and importance.

The first series of experiments was carried out to ascertain whether exposure to sunshine increases or reduces an animal's susceptibility to particular diseases, those selected for investigation being typhoid fever and cholera. For this purpose guinea-pigs were exposed to the full rays of the sun during a period of from nine to fifteen hours for two days, whilst other guinea-pigs, for the sake of comparison, were not permitted to have more light than that obtainable in a stable where only diffused light was admitted. Both these sets of animals were subsequently infected with virulent cultures of cholera and typhoid germs respectively, and were in neither case exposed to sunshine. The results which Dr. Masella obtained were remarkable, for he found that those animals which previous to infection had been placed in the sunshine died more rapidly than those which had been kept in the stable, and that the exposure to the sun's rays had so increased their susceptibility to these diseases that they succumbed to smaller doses, and doses, moreover, which did not prove fatal to the other guinea-pigs. Still more striking was the part played by insolation in the course of these diseases in animals exposed to sunshine after inoculation, for instead of dying in from fifteen to twenty-four hours, they succumbed in from three to five hours.

Here, then, we find sunshine, in some mysterious manner not yet understood, far from benefiting the animal and assisting it in combating these diseases, actually contributing to the lethal action of these bacteria. It has been asserted on the authority of some medical men that in cases of small-pox recovery is rendered more easy and rapid when light is excluded from the patient's room; whether Dr. Masella's experiments will permit of any such interpretation being placed upon them remains to be seen; they are, at any rate, extremely suggestive.

That it is possible for temperature to have some determining influence upon the course of certain diseases has been shown by O. Voges, who, experimenting with a minute bacillus which he isolated from tumours characteristic of a cattle disease very prevalent in South America, found that although this bacillus was the undoubted fons et origo of the disease, he could not produce fatal results in animals if he kept them in cold surroundings; only when the temperature was raised to from 35-45 degrees Centigrade did the infected animals succumb. The dependence of the activity and virulence of this micro-organism upon temperature is also borne out in actual experience, the disease being the more prevalent and the more fatal the hotter the climate of the country.

4In the interior of some bacilli there appears a round or oval body, having a very bright and shining lustre, which is known as a spore, and plays a most important part in the propagation of many kinds of bacilli. These spores are capable of resisting many hardships, which would be immediately fatal to the parent bacilli from which they have sprung.
5Percy Frankland, Our Secret Friends and Foes, 4th edition, p. 188.
Купите 3 книги одновременно и выберите четвёртую в подарок!

Чтобы воспользоваться акцией, добавьте нужные книги в корзину. Сделать это можно на странице каждой книги, либо в общем списке:

  1. Нажмите на многоточие
    рядом с книгой
  2. Выберите пункт
    «Добавить в корзину»