

О.В. Пугачёв

ЛЕКЦИИ ПО МАТЕМАТИЧЕСКОМУ АНАЛИЗУ. ИНТЕГРАЛЫ

УДК 517.31 ББК 22.161.1 П88

Издание доступно в электронном виде на портале *ebooks.bmstu.ru* по адресу: http://ebooks.bmstu.ru/catalog/95/book/33.html

Факультет «Фундаментальные науки» Кафедра «Прикладная математика»

Рекомендовано Редакционно-издательским советом МГТУ им. Н.Э. Баумана в качестве учебного пособия

Рецензент д-р физ.-мат. наук, профессор А.А. Амосов

Пугачёв, О.В.

П88 Лекции по математическому анализу. Интегралы: учебное пособие / О. В. Пугачёв. — Москва: Издательство МГТУ им. Н. Э. Баумана, 2015. — 74, [6] с.: ил.

ISBN 978-5-7038-4102-0

Курс лекций (с задачами для самостоятельной работы) содержит следующие темы: неопределенные и определенные интегралы, геометрические и физические приложения определенных интегралов, несобственные интегралы.

Для студентов 1-го курса, обучающихся в высших технических учебных заведениях.

УДК 517.31 ББК 22.161.1

[©] МГТУ им. Н.Э. Баумана, 2015

[©] Оформление. Издательство МГТУ им. Н.Э. Баумана, 2015

Лекция №1

НЕОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ

Определение 1.1. Функция F(x) называется первообразной или неопределенным интегралом функции f(x) на промежутке $I \subset \mathbb{R}$, если $\forall \ x \in I \ F'(x) = f(x)$, и обозначается

$$F(x) = \int f(x)dx.$$

Если F и G — две первообразные f на I, то $F-G={\rm const}$ на I. Действительно, если $(F-G)'\equiv 0$ на I, то по теореме Лагранжа при $a< b,\ a,\ b\in I$, имеем

$$(F-G)(b) - (F-G)(a) = (b-a)(F-G)'(c) = 0,$$
где $a < c < b$.

Свойства неопределенных интегралов

Линейность.

$$\int af(x) + bg(x)dx = a \int f(x)dx + b \int g(x)dx.$$

Формула интегрирования по частям. Если f и g дифференцируемы на I, то

$$\int f(x)g'(x)dx = f(x)g(x) - \int g(x)f'(x)dx.$$

Эту формулу можно переписать так:

$$\int f(x)dg(x) = f(x)g(x) - \int g(x)df(x).$$

Замена переменного (следствие формулы дифференцирования сложной функции). Пусть $\varphi(x)$ дифференцируема на I. Тогда

$$\int f(\varphi(x))\varphi'(x)dx = \int f(y)dy \bigg|_{y=\varphi(x).}$$

Метод подстановки. Пусть $x = \xi(u)$, ξ' сохраняет знак на J. Тогда функция ξ биективно отображает промежуток J в промежуток I, и первообразная f(x) на I может быть вычислена по формуле

$$\int f(x)dx = \int f(\xi(u))\xi'(u)du.$$

Следующие интегралы элементарных функций следует проверить дифференцированием и выучить наизусть:

$$\int x^{a} dx = \frac{x^{a+1}}{a+1} + C, \quad a \neq -1; \quad \int \frac{1}{x} dx = \ln|x| + C;$$

$$\int a^{x} dx = \frac{1}{\ln a} a^{x}, \quad a > 0, \ a \neq 1;$$

$$\int \cos x \, dx = \sin x + C; \quad \int \sin x \, dx = C - \cos x;$$

$$\int \frac{dx}{\cos^{2} x} = \operatorname{tg} x + C; \quad \int \frac{dx}{\sin^{2} x} = C - \operatorname{ctg} x;$$

$$\int \frac{dx}{\sqrt{a^{2} - x^{2}}} = \arcsin \frac{x}{a} + C, \quad a > 0;$$

$$\int \frac{dx}{a^{2} + x^{2}} = \frac{1}{a} \operatorname{arctg} \frac{x}{a} + C, \quad a > 0;$$

$$\int \frac{dx}{\sqrt{x^{2} + b}} = \ln|x + \sqrt{x^{2} + b}| + C, \quad b \neq 0.$$

Интегралы сложных функций вычисляются с помощью свойств, перечисленных выше. Но успех не гарантирован!

Определение 1.2. Неберущимися интегралами называют первообразные элементарных функций, не являющиеся элементарными функциями.

Если интеграл сводится к неберущемуся, значит, он тоже неберущийся. Полезно знать наиболее известные примеры неберущихся

интегралов, чтобы не потратить время на безуспешные попытки их выразить:

$$\int e^{\pm x^2} dx; \quad \int \frac{\sin x}{x} dx; \quad \int \frac{e^x}{x} dx; \quad \int \frac{\ln(1+x)}{x} dx;$$

$$\int \sqrt{a^2 \cos^2 x + b^2 \sin^2 x} dx, \quad \int \sqrt{\frac{1+ax^2}{1+bx^2}} dx, \quad \stackrel{a \neq 0}{b \neq 0},$$

$$a \neq b.$$

Рассмотрим примеры интегрирования при помощи замены переменного.

Пример 1.1

$$\int \frac{dx}{\sqrt{3x+2}} dx = [\text{замена} \ y = 3x+5 \Longrightarrow dy = 3dx]$$

$$= \frac{1}{3} \int \frac{dy}{\sqrt{y}} = \frac{1}{3} \frac{\sqrt{y}}{1/2} + C = \frac{2}{3} \sqrt{3x+5} + C.$$

Пример 1.2

$$\int \frac{\cos x}{\sqrt{5-\cos^2 x}} dx = \int \frac{\cos x \ dx}{\sqrt{4+\sin^2 x}} dx = \int \frac{dy}{\sqrt{4+y^2}} =$$
 [замена: $y = \sin x \Longrightarrow dy = \cos x \ dx$]
$$= \ln |y+\sqrt{4+y^2}| + C = \ln |\sin x + \sqrt{4+\sin^2 x}| + C.$$

Пример 1.3

$$\int \frac{x \, dx}{x^4 + 6x^2 + 90} = \frac{1}{2} \int \frac{d(x^2)}{(x^2 + 3)^2 + 81} = \begin{bmatrix} \text{ замена} \\ y = x^2 + 3 \end{bmatrix}$$
$$= \frac{1}{2} \int \frac{dy}{y^2 + 81} = \frac{1}{18} \operatorname{arctg} \frac{y}{9} + C = \frac{1}{18} \operatorname{arctg} \frac{x^2 + 3}{9} + C.$$

Теперь рассмотрим примеры интегрирования по частям.

Пример 1.4

Пусть $n \neq -1$.

$$\int x^n \ln x \, dx = \frac{1}{n+1} \int \ln x \, d(x^{n+1}) =$$

$$= \frac{1}{n+1} \left(x^{n+1} \ln x - \int x^{n+1} \frac{dx}{x} \right) = \frac{x^{n+1} \ln x}{n+1} - \frac{x^{n+1}}{(n+1)^2} + C.$$

Пример 1.5

В этом примере нужно 2 раза интегрировать по частям.

$$\int (x^2 + x)e^{2x} dx = \frac{1}{2} \int (x^2 + x)de^{2x} =$$

$$= \frac{1}{2} \Big((x^2 + x)e^{2x} - \int e^{2x} (2x + 1) dx \Big) =$$

$$= \frac{e^{2x}}{2} (x^2 + x) - \frac{1}{4} \int (2x + 1)de^{2x} =$$

$$= \frac{e^{2x}}{2} (x^2 + x) - \frac{1}{4} \Big((2x + 1)e^{2x} - \int e^{2x} 2dx \Big) =$$

$$= \frac{e^{2x}}{4} \Big(2(x^2 + x) - (2x + 1) + 1 \Big) + C = \frac{x^2 e^{2x}}{2} + C.$$

Пример 1.6

В этом примере тоже придется интегрировать по частям 2 раза, но здесь первообразная выразится сама через себя:

$$F(x) = \int e^x \sin 2x \, dx = \int \sin 2x \, d(e^x) =$$

$$= e^x \sin 2x - \int e^x \, d\sin 2x = e^x \sin 2x - 2 \int e^x \cos 2x \, dx =$$

$$= e^x \sin 2x - 2 \int \cos 2x \, d(e^x) =$$

$$= e^x \sin 2x - 2e^x \cos 2x + 2 \int e^x \, d(\cos 2x) =$$

$$= e^x \sin 2x - 2e^x \cos 2x - 4 \int e^x \sin 2x \, dx =$$

$$= e^x \sin 2x - 2e^x \cos 2x - 4F(x) + C,$$

откуда получаем, перенеся 4F(x) в левую часть,

$$F(x) = \frac{1}{5} (e^x \sin 2x - 2e^x \cos 2x) + C_1.$$

Задачи по теме лекции 1

Вычислить неопределенные интегралы, выбрав замену переменного:

1.1.
$$\int \frac{dx}{\sqrt[3]{5x+1}} dx.$$
 1.2.
$$\int (x+2)^7 x \, dx.$$

1.3.
$$\int xe^{-x^2/2} dx.$$
 1.4.
$$\int \frac{dx}{(x+1)\sqrt{x}}.$$

1.5.
$$\int \frac{\operatorname{tg}^3 x \, dx}{\cos^2 x}.$$
 1.6.
$$\int \frac{x - \operatorname{arctg} x}{1 + x^2} dx.$$

1.7.
$$\int \frac{\sqrt{2 \ln x + 1}}{x} dx.$$

В данных задачах применить интегрирование по частям:

1.8.
$$\int \arcsin x \, dx$$
. 1.9. $\int \arctan x \, dx$.

1.10.
$$\int x^2 \sin 2x \, dx$$
. **1.11**. $\int x^3 e^x dx$. **1.12**. $\int \frac{\ln \sin x}{\cos^2 x} dx$.

ОГЛАВЛЕНИЕ

Предисловие	3
Лекция № 1	
Неопределенный интеграл	4
Лекция № 2	
Интегрирование рациональных функций	9
Лекция № 3	
Интегрирование тригонометрических функций	14
Лекция № 4	
Интегрирование иррациональных функций	18
Лекция № 5	
Определенный интеграл Римана	25
Лекция № 6	
Свойства определенного интеграла	30
Лекция № 7	
Площади плоских фигур	36
Лекция № 8	
Объемы	43
Лекция № 9	
Длины кривых	50
Лекция № 10	
Площади поверхностей вращения	55
Лекция № 11	
Физические приложения определенных интегралов	59
Лекция № 12	
Несобственные интегралы	65
Ответы к задачам	73
Литература	76