
В.В. Зеленцов, Г.А. Щеглов

КОНСТРУКТИВНО-КОМПОНОВОЧНЫЕ СХЕМЫ РАЗГОННЫХ БЛОКОВ

УДК 629.784 ББК 39.66 3-48

Издание доступно в электронном виде на портале *ebooks.bmstu.ru* по адресу: http://ebooks.bmstu.ru/catalog/74/book1729.html

Факультет «Специальное машиностроение» Кафедра «Аэрокосмические системы»

Рекомендовано Редакционно-издательским советом МГТУ им. Н.Э. Баумана в качестве учебного пособия

Рецензенты:

заместитель начальника отдела АО «ВПК «НПО машиностроения» канд. техн. наук *С.М. Асатуров*, доцент кафедры «Космические аппараты и ракеты-носители» МГТУ им. Н.Э. Баумана, канд. техн. наук *В.П. Печников*

Зеленцов, В. В.

3-48 Конструктивно-компоновочные схемы разгонных блоков : учебное пособие / В. В. Зеленцов, Г. А. Щеглов. — Москва : Издательство МГТУ им. Н. Э. Баумана, 2018. — 139, [1] с. : ил.

ISBN 978-5-7038-4753-4

Приведены конструктивно-компоновочные схемы существующих разгонных блоков, а также предложены другие возможные варианты их компоновки. Даны основные формулы для баллистического расчета, выбора типа топлива и определения массы разгонного блока и входящих в него систем. Приведены примеры соединения конструкций, изготовленных из композиционных материалов.

Для студентов, обучающихся по специальности «Проектирование, производство и эксплуатация ракет и ракетно-космических систем» и выполняющих курсовые и дипломные проекты.

> УДК 629.784 ББК 39.66

[©] МГТУ им. Н.Э. Баумана, 2018

[©] Оформление. Издательство МГТУ им. Н.Э. Баумана, 2018

Оглавление

предисловие	
Введение	. 4
Глава 1. Классификация разгонных блоков	
1.1. Классификация по назначению	
1.2. Классификация по массе	
1.3. Классификация по типу двигательной установки	
1.4. Классификация по типу конструкции	
Контрольные вопросы	
Глава 2. Теоретический расчет разгонного блока	
2.1. Баллистический расчет разгонного блока	
2.2. Объемно-массовый анализ разгонного блока	
2.3. Бортовая аппаратура разгонных блоков	
Контрольные вопросы	
Глава 3. Конструктивно-компоновочные схемы разгонных блоков	33
3.1. Конструктивно-компоновочная схема разгонных блоков	
типа «ДМ»	33
3.2. Конструктивно-компоновочные схемы вариантов РБ,	
аналогичных по компоновочной схеме блокам серии «ДМ»	
(разработанные в РКК «Энергия»)	43
3.3. Конструктивно-компоновочная схема разгонных блоков	
серии «Фрегат»	47
3.4. Конструктивно-компоновочные схемы разгонных блоков,	
разработанных ГКНПЦ им. М.В. Хруничева	
3.5. Конструктивно-компоновочные схемы, разработанные в США	62
3.6. Конструктивно-компоновочная схема разгонного блока	
европейской ракеты-носителя Ariane 5	
3.7. Твердотопливные разгонные блоки	
3.8. Телеуправляемый разгонный блок	
3.9. Разгонные блоки с электрореактивной двигательной установкой	
3.10. Прочие разгонные блоки	
Контрольные вопросы	
Глава 4. Конструкции разгонных блоков	102
4.1. Материалы, применяемые при конструировании разгонных	
блоков	
4.2. Конструкция сухих отсеков	
4.3. Конструкция топливных баков	
4.4. Конструкция ферм	
4.5. Конструкция тепловой защиты	122

4.6. Крепление двигательной установки	125
4.7. Примеры выполнения конструктивных элементов	
Контрольные вопросы	
Заключение	
Литература	137

Учебное издание

Зеленцов Владимир Викторович **Щеглов** Георгий Александрович

Конструктивно-компоновочные схемы разгонных блоков

Редактор К.А. Осипова Художник Э.Ш. Мурадова Корректор О.Ю. Соколова Компьютерная графика Г.Ю. Молотковой Компьютерная верстка Г.Ю. Молотковой

Оригинал-макет подготовлен в Издательстве МГТУ им. Н.Э. Баумана.

В оформлении использованы шрифты Студии Артемия Лебедева.

Подписано в печать. 08.11.2017. Формат 70×100/16. Усл. печ. л. 11,375. Тираж 100 экз. Изд. № 094-2016. Заказ

Издательство МГТУ им. Н.Э. Баумана. 105005, Москва, 2-я Бауманская ул., д. 5, стр. 1. press@bmstu.ru www.baumanpress.ru

Отпечатано в типографии МГТУ им. Н.Э. Баумана. 105005, Москва, 2-я Бауманская ул., д. 5, стр. 1. baumanprint@gmail.com

ГЛАВА 1. КЛАССИФИКАЦИЯ РАЗГОННЫХ БЛОКОВ

Межорбитальный разгонный блок предназначен для выполнения маневров выведения космических аппаратов на рабочие орбиты и автоматических межпланетных станций (АМС) — на отлетные к другим планетам орбиты. Для решения этих задач РБ должен обладать двигательной установкой многократного включения и длительным временем активного существования, высокой надежностью и энергетическими характеристиками, а также иметь минимальную стоимость.

Разгонные блоки можно классифицировать по ряду признаков: назначению, используемому топливу, типу двигательной установки и др. На рис. 1.1 приведена классификация РБ.

1.1. Классификация по назначению

По целевому назначению РБ можно подразделить:

на *разгонные ступени ракет-носителей* (PH) — последние ступени PH, выводящие KA на рабочую орбиту, например 12KPБ, «Бриз-М», «ДМ», «ДМ-SL», «ДМ-SLБ», KBPБ, Agena, Centaur, IUS (Interim Upper Stage — верхняя ступень промежуточного этапа), вторые ступени PH Ariane, Delta;

разгонные блоки, осуществляющие маневрирование — обеспечивают перевод КА с опорной орбиты на рабочую, изменение угла наклонения плоскости орбиты, осуществление многоразового включения и выключения ДУ. К ним относятся 12 КРБ, «Бриз-М», «ДМ», «ДМ-SL», «ДМ-SLБ», КВРБ, Agena, Centaur, IUS, вторые ступени PH Ariane, Delta;

разгонные блоки, выводящие полезную нагрузку (ΠH) на низкую орбиту — осуществляют выведение ΠH на низкую околоземную орбиту. Это P B «Бриз-K», «Бриз-K M», «Фрегат», «Икар», «Таймыр», OAM, верхние ступени легких P H «Днепр», «Космос», Pegasus, Taurus, Minotaur и др.;

разгонные блоки, выводящие ПН на высокую орбиту — переходные орбиты с большой разницей высот, формирование вытянутых эллиптических орбит и др. (12КРБ, «Бриз-М», «ДМ», «ДМ-SL», «ДМ-SLБ», КВРБ, Agena, Centaur, IUS, вторые ступени РН Ariane, Delta);

разгонные блоки, выводящие ПН на межпланетную траекторию — осуществляют увод ПН с орбиты искусственного спутника Земли и перевод его на межпланетную траекторию (Altair-1, Altair-2, Altair-3, IABS, Mage-1, Mage-2, OAM, различные версии РАМ).

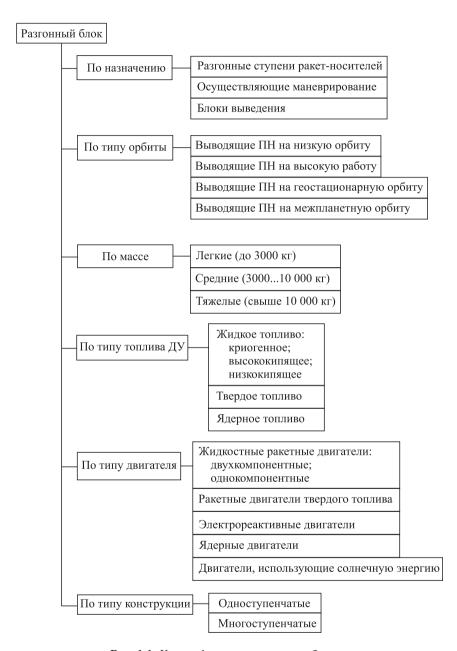


Рис. 1.1. Классификация разгонных блоков

1.2. Классификация по массе

По массе РБ можно подразделить на:

легкие — предназначенные для вывода и формирования низких околоземных орбит спутников массой менее 1500 кг, например «Ямал», Altair-1, Altair-2, Altair-3, IABS, Mage-1, Mage-2, OAM, PAM-A, PAM-D, PAM-DII, PAM-S;

cpeдниe — предназначены для выведения на низкие и средние орбиты спутников массой до 3000 кг, спутниковых систем пакетного выведения (4—6 спутников), выполнения сложных маневров, требующих многоразового включения. К ним относятся «Л», «Бриз-К», «Бриз-КМ», «Икар», «Фрегат», SPORT;

тяжелые — последние ступени PH, выводящие ПН массой свыше 3000 кг на геостационарные орбиты, орбиты с высоким апогеем, солнечно-синхронные орбиты и др. К ним относятся 12КРБ, «Бриз-М», «ДМ», «ДМ-SL», «ДМ-SLБ», КВРБ, вторая ступень PH «Космос-3М», Agena, Centaur, IUS, Transtage, Transtage Stretch.

1.3. Классификация по типу двигательной установки

При проектировании РБ большое значение имеет тип двигательной установки (ДУ) и соответственно вид топлива. В зависимости от выполняемых задач на РБ могут использоваться жидкостные ракетные двигатели (ЖРД), ракетные двигатели твердого топлива (РДТТ), электрореактивные (ЭРД) и ядерные ракетные двигатели (ЯРД). Для каждого типа двигателя применяется определенный вид топлива: на ЖРД — жидкое топливо, на РДТТ — твердое топливо, на ЭРД — газообразное топливо и ЯРД — ядерное топливо. Основной показатель, характеризующий ракетное топливо — удельный импульс, который оказывает определяющее влияние на соотношение массы РБ и ПН, а также определяет размеры РБ.

Разгонные блоки с ЖРД — наиболее распространенный тип двигателей, работающих в большом диапазоне тяг от нескольких ньютонов до нескольких десятков тысяч ньютонов. Такие двигатели позволяют проводить многократное включение и выключение. Недостатками являются сложная система заправки, малый срок хранения в заправленном состоянии и на старте, высокая стоимость и низкая надежность. Двигатели подразделяются на двухкомпонентные, работающие на смеси двух компонентов — горючем и окислителе, и однокомпонентные, использующие унитарный вид топлива, разлагающийся в процессе эксплуатации на горючее и окислитель (перекись водорода, гидразин и др.). Подача топлива осуществляется одним из двух способов: насосная с помощью турбонасосного агрегата (ТНА) или вытеснительная с помощью газа.

Топливо ЖРД подразделяется на криогенное, высококипящее и низкокипящее. *Криогенное* — жидкое топливо, один или оба компонента которого являются сжиженными газами, например жидкий кислород, жидкий фтор и жидкий водород. На криогенном топливе работают «ДМ», «ДМ-SL», «ДМ-SLБ», «12КРБ», «КВРБ» и различные модификации Centaur.

Высококипящее — жидкое топливо, оба компонента которого имеют температуру кипения выше 298 К (анилин, тетранитрометан, азотная кислота и др.). На высококипящих работают РБ Agena, Agena D.

Низкокипящее — жидкое топливо, один или оба компонента которого в условиях эксплуатации имеют температуру кипения ниже 298 К (например, тетраоксид диазота). На низкокипящих топливах работают «Бриз К», «Бриз-КМ», «Бриз М», «Икар», «Фрегат», SPORT, OAM, IABS.

В табл. 1.1 приведены характеристики жидкого ракетного топлива.

 $\begin{tabular}{ll} $\it Taблицa 1.1 \\ \end{tabular}$ Основные свойства некоторых топлив ЖРД

	ı			1	r
Окислитель	Горючее	Удельный импульс $J_{\rm yg}$, м/с	Соотношение компонентов топлива	Средняя плотность, $\kappa \Gamma / M^3$	Температура горения T , °C
Азотная кислота HNO ₃ (98 %)	Керосин	2300-3130	5,34	1360	2980-3010
Азотная кислота HNO ₃ (98 %)	Тонка	2350-3100	_	1320	3000
Тетраоксид диазота N_2O_4	Керосин	2400-3100	_	1380	3300
Жидкий кислород	Керосин	2750-3475	2,73-2,9	1000	3600
Жидкий кислород	Этиловый спирт (92 %)	2550	1,5	990	3300
Жидкий кислород	Жидкий водород	3350-4540	3,5-5,56	260-320	2755-3270
Жидкий фтор	Гидразин	3450	2,0	1320	4650
Жидкий кислород	ДМГ	2850-2950	_	1020	3545
Жидкий кислород	НДМГ	2680-3590	1,92	960	3012
Азотная кислота HNO ₃ (98 %)	НДМГ	2530-3120	3,2	1280	_
Азотная кислота HNO ₃ (70 %) + + оксиды азота (30 %)	НДМГ	2530	3,0	1280	3140
Тетраоксид диазота (N_2O_4)	НДМГ	2680-2795	2,5-2,8	1185	3360
Тетраоксид диазота (N_2O_4)	Аэрозин-50 (50 % НДМГ + 50 % гидразин)	2700-3305	2,13-3,00	1240— 1280	3140
Жидкий кислород	Природный газ	3050-3740	3,4-3,5	820,4	_

В табл. 1.2 и 1.3 приведены основные физико-химические свойства окислителей и горючего соответственно.

Основные физико-химические свойства окислителей

Окислитель	Химическая формула	Молекулярная масса, кг/моль	Плотность, $\kappa \Gamma / M^3$	<i>T</i> _{пл} , К*	<i>Т</i> _{кип} , К**
Жидкий кислород	O ₂	32	1140	54,3	90,10
Жидкий фтор	F ₂	38	1510	55,16	85,10
Азотная кислота	HNO ₃	63,016	1510	231,56	359,16
Тетраоксид диазота	N ₂ O ₄	92,016	1450	261,196	294,36

^{*} Температура плавления.

Таблица 1.3

Основные физико-химические свойства горючего

Горючее	Химическая формула	Молекулярная масса, кг/моль	Плотность, $\kappa \Gamma / M^3$	<i>Т</i> _{пл} , К	$T_{\text{кип}}$, К
Водород жидкий	H_2	2,016	71	13,75	20,46
Керосин	C _{7,2102} H _{13,2936}	100 (усл)	834,7	213	423-588
Гидразин	N_2H_4	32,048	1010	271,56	368,66
НДМГ	(CH ₃) ₂ NNH ₂	60,102	783	215	236

Разгонные блоки с РДТТ по сравнению с ЖРД обладают рядом преимуществ: относительная простота конструкции, быстрый запуск без сложной предстартовой подготовки, высокая надежность, низкая стоимость, простота эксплуатации, длительный срок годности. Вместе с тем есть и недостатки: малый удельный импульс, сложность регулирования времени работы и тяги двигателя в полете и сложность организации многоразового включения и выключения, а также транспортировка РДТТ. РДТТ оснащены PH: Delta III, Mage-1 с Ariane-1, Mage-2 с Ariane-2/3, Altair-1, Altair-2, Altair-3 с PH Delta.

Топливо РДТТ подразделяется на гомогенное и смесевое. *Гомогенное топливо* — твердые растворы (обычно — нитроцеллюлозы) в нелетучем растворителе (обычно в нитроглицерине). Применяются в небольших ракетных двигателях.

Смесевое топливо представляет собой смесь горючего и окислителя в твердом состоянии. В смесевых топливах в качестве окислителя используются:

- перхлораты: аммония (NH_4ClO_4), лития ($LiClO_4$), калия ($KClO_4$);
- нитраты (селитры): калия (KNO $_3$), аммония (NH $_4$ NO $_3$) и др.;
- динитрамид аммония $(NH_4N(NO_2)_2)$,

а в качестве горючего:

• металлы или их сплавы (алюминий, магний, литий, бериллий), гидриды металлов;

^{**} Температура кипения.

- полимеры и смолы (полиэтилен, полиуретан, полибутадиен, каучук, битум);
 - полисульфиды, бор, углерод и другие вещества.

В современных твердотопливных двигателях большой мощности чаще всего применяют смесь перхлората аммония с алюминием и каучуками. Иногда вместо каучуков используют полиуретан, что позволяет повысить срок годности шашки твердого ракетного топлива и увеличить ее жесткость, но в ущерб технологичности производства. В табл. 1.4 приведены характеристики различных твердых топлив.

Характеристики твердого топлива с добавками алюминия

Таблица 1.4

V			Ma	рка топл	ива		
Характеристика	1	2	3	4	5	6	7
Теоретический удельный импульс, H·c/кг/g	241	246,5	240,8	254,7	253	228,1	246,5
Плотность, г/см3	1,71	1,75	1,74	1,75	1,83	1,7	1,87
Скорость горения ($t = 20$ °C, $P = 10 \text{ M}\Pi a$), мм/с	8-12	8-12	45,8	9,4	8,2	19	75,7
Температура продуктов сгорания, К	3030	3240	3367	3534	3610	2858	3229
Газовая постоянная, (H·м/кг)/g	31,3	31,3	30,59	29,13	_	33,1	30,71
Показатель адиабаты	1,14	1,14	1,14	1,14	1,14	1,22	1,13
Показатель степени в законе горения	0,4	0,35	0,45	0,32	0,35	0,37	0,5
Содержание Al, %	4,2	9,3	18	20	20	0	10

Разгонные блоки с ЭРД — это, как правило, двигатели малой тяги от долей ньютонов до 200 H, используются в качестве двигателей для межпланетных перелетов и исполнительных органов системы управления движением. По принципу ускорения отбрасываемой массы ЭРД можно разделить на четыре типа:

электротепловые;

магнитоэлектрические;

электростатические;

электромагнитные.

Электрореактивные двигатели имеют широкий диапазон тяг (0,14...102 Н) при высоком удельном импульсе. Отдельные типы двигателей сохраняют работоспособность в течение тысяч часов.

В качестве рабочего тела в ЭРД применяются жидкости, газы и их смеси. Для каждого типа двигателей используются определенные вещества, позволяющие получить максимальные тяги — для электротермических двигателей — аммиак, для электростатических двигателей — ксенон, для сильноточных двигателей — литий, для импульсных двигателей — фторопласт.

Недостатком ксенона является его высокая стоимость и небольшие объемы производства в мире (не более 10 т в год). Вместо него можно использовать аргон или йод.

Разгонные блоки с ЯРД представляют собой реактор, в котором вдоль тепловыделяющих элементов с ядерным топливом проходит поток газа (рабочего тела), например, водорода (или другого элемента, обладающего большой теплоемкостью). Охлаждая тепловыделяющие элементы, рабочее тело нагревается и с большой скоростью истекает из сопла, создавая тягу двигателя. При этом возникает импульс, толкающий РБ вперед. Температура газа на выходе должна быть очень высока — не менее $3000\,^{\circ}$ C, а удельная тяга — $950\,^{\circ}$ C и выше.

Такие двигатели требуют системы охлаждения и сложной конструкции радиационной защиты, которая определяется предельно допустимым уровнем радиации и может быть например, теневой, в виде усеченного конуса. В качестве основных компонентов защиты выбирают гидрид циркония, активированный бором, и гидрид лития.

Ядерные двигатели — двухконтурные двигатели, в которых рабочее тело (водород, аммиак и др.) нагревается за счет энергии, выделяющейся при ядерных реакциях (распада или термоядерного синтеза).

Двигатели бывают ядерные и термоядерные, позволяющие получать удельные импульсы благодаря высокой скорости истечения газов, от 8000 м/с до 50 км/с, что значительно превышает значения удельных импульсов остальных ракетных двигателей. Тяга ядерных ракетных двигателей сравнима с тягами современных химических ракетных двигателей (ЖРД и РДТТ).

Источником тепла, или топливом радиоизотопных источников тока, являются достаточно коротко живущие радиоактивные изотопы различных химических элементов.

К изотопам и изготовляемым на их основе соединениям и сплавам как к источникам тепла предъявляются следующие требования:

- достаточно большой период полураспада;
- безопасность в обращении и эксплуатации (желательно отсутствие жесткого гамма-излучения, нейтронов);
 - высокая температура плавления сплавов и соединений;
- большое удельное энерговыделение, а для изотопов, способных к делению, и как можно большая критическая масса.

Характеристики применяемых в настоящее время изотопов приведены в табл. 1.5.

Разгонные блоки с двигателями, использующими солнечную энергию. Простейшим таким двигателем является солнечный парус — устройство, работающее за счет давления солнечного света или лазера на зеркальную поверхность. Преимущество солнечного паруса — отсутствие топлива на борту КА, а недостаток — необходимость иметь большие поверхности для получения требуемой тяги.

Характеристики применяемых в РИТЭГ изотопов

Изотоп	Способ	Удельная мощность, Вт/г	Объемная мощность, Вт/см³	Период полураспада	Интегрированная энергия распада изотопа, кВг ⁻⁴ /г	Рабочая форма изотопа
⁶⁰ Со (кобальт-60)	Облучение в реакторе	2,9	~26	5,271 года	193,2	Металл, сплав
²³⁸ Pu (плутоний-238)	Атомный реактор	0,568	6,9	86 лет	608,7	Карбид плутония
⁹⁰ Sr (стронций-90)	Осколки деления	0,93	0,7	28 лет	162,721	SrO, SrTiO ₃
¹⁴⁴ Се (церий-144)	То же	2,6	12,5	285 cyr	57,439	CeO ₂
²⁴² Ст (кюрий-242)	Атомный реактор	121	1169	162 дня	8'229	Cm ₂ O ₃
¹⁴⁷ Рт (прометий-147)	Осколки деления	0,37	1,1	2,64 года	12,34	Pm_2O_3
¹³⁷ Сs (цезий-137)	То же	0,27	1,27	33 года	230,24	CsCl
²¹⁰ Ро (полоний-210)	Облучение висмута	142	1320	138 сут	677,59	Сплавы со свинцом, иттрием, золотом
²⁴⁴ Сm (кюрий-244)	Атомный реактор	2,8	33,25	18,1 года	640,6	Cm ₂ O ₃
²³² U (уран-232)	Облучение тория	8,097	~88,67	68,9 лет	4887,103	Диоксид, карбид, нитрид урана
¹⁰⁶ Ru (рутений-106)	Осколки деления	29,8	369,818	~371,63 cyr	9,854	Металл, сплав

1.4. Классификация по типу конструкции

В зависимости от запаса характеристической скорости, которую должен обеспечить РБ, они подразделяются на одно- и двухступенчатые.

Oдноступенчатые $P\bar{b}$ — последние ступени PH, а также легкие $P\bar{b}$, представляющие моноблочную конструкцию, состоящую из баков и двигательной установки.

Двухступенчатые PБ — выполняют сложные маневры, такие как выведение KA на геостационарные орбиты или выведение ПН на отлетную межпланетную траекторию.

Возможны два конструктивных решения:

- 1) РБ состоит из двух продольно соединенных блоков, каждый из которых представляет собой конструктивно законченный РБ;
- 2) РБ состоит из ДУ, баков, бортовой аппаратуры и подвесного бака, сбрасываемого после выработки топлива.

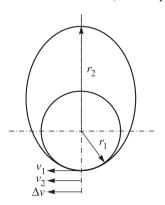
Подобная конструкция позволяет использовать одну ДУ и бортовую аппаратуру для выполнения всего маневра. Это приводит к снижению массы РБ и, как следствие, увеличению массы ПН.

Двухступенчатые РБ выполняются по одной из двух конструктивно-компоновочных схем: продольная, когда ступени размещены одна за другой (например, РБ «ДМ», «Фрегат»), и параллельная, когда ступени расположены параллельно, подобная компоновка в основном применяется для конструкции со сбрасываемыми баками (в частности, на РБ «Бриз»).

Контрольные вопросы

- 1. По какому признаку классифицируются разгонные блоки?
- 2. Какие марки топлива используются в ЖРД?
- 3. Какими преимуществами и недостатками обладают твердотопливные двигатели?
 - 4. Какие вещества используются в качестве рабочего тела в ЭРД?
 - 5. На каком принципе построены ядерные ракетные двигатели?

ГЛАВА 2. ТЕОРЕТИЧЕСКИЙ РАСЧЕТ РАЗГОННОГО БЛОКА


Для разработки конструктивно-компоновочной схемы РБ необходимы знания объемно-массовых характеристик, вида топлива и объема буферных аккумуляторных батарей. Для их определения необходимо провести баллистический расчет и объемно-массовый анализ разрабатываемого РБ.

2.1. Баллистический расчет разгонного блока

С помощью РБ выполняются следующие маневры:

- одноимпульсный маневр изменение высоты апогея или перигея орбиты;
- двухимпульсный маневр изменение высоты полета и формирование формы новой орбиты;
- маневр по изменению угла наклонения плоскости орбиты, поворот плоскости орбиты;
- маневры по переводу автоматической межпланетной станции на отлетную траекторию, перевод на параболическую или гиперболическую орбиту.

В случае если импульс скорости, необходимый для выполнения маневра, незначительный, маневр выполняется за счет собственной ДУ КА.

Рис. 2.1. Схема перелета при одноимпульсном маневре

Одноимпульсный перелет. Для проведения одноимпульсного маневра необходимо сформировать эллиптическую орбиту с высотой перигея, равной высоте опорной орбиты (рис. 2.1). Перелет осуществляется по гомоновской орбите. Скорость полета по опорной орбите

$$v_1 = \sqrt{\frac{\mu}{r_1}},\tag{2.1}$$

где v_1 — скорость полета по круговой орбите; r_1 — радиус опорной орбиты; μ — гравитационный параметр планеты.

Скорость полета в перигее (апогее в случае уменьшения высоты орбиты) орбиты перелета