УЧЕБНОЕ ПОСОБИЕ

В.Б. Гисин

МАТЕМАТИКА

МАТЕМАТИЧЕСКИЙ АНАЛИЗ 1

Рецензенты:

А.В. Чечкин, доктор физико-математических наук, профессор департамента математики Финансового университета при Правительстве Российской Федерации;
O.E.Opeл, кандидат физико-математических наук, доцент кафедры высшей математики Московского физикотехнического института (МФТИ).

Гисин B.В.

Г51 Математика. Математический анализ 1: Учебное пособие / В.Б. Гисин. - М.: Прометей, 2023. 148 c.

ISBN 978-5-00172-481-0
Математика. Математический анализ 1: учебное пособие для студентов, обучающихся по направлению «Экономика» 38.03.01 - программа подготовки бакалавра

Пособие предназначено для студентов, изучающих математику на английском языке. Пособие содержит учебный материал, относящийся к введению в математический анализ и таким его разделам, как дифференциальное и интегральное исчисление функций одной переменной.

CONTENTS

PRECALCULUS 6
1.1. BASIC NOTATIONS 6
Signs and Symbols. Functions. Sets. Greek Alphabet
1.2. GRAPHS ON THE CARTESIAN PLANE 11
Rectangular coordinates. The Graph of an Equation
1.3. FUNCTIONS 16
Basic Notions. Elementary Functions. Symmetry. Transformations. Basic Shapes
1.4. COMPLEX NUMBERS 36
The Set of Complex Numbers. Addition,Subtraction, and Multiplication of ComplexNumbers. Complex Conjugate. A Quotient ofComplex Numbers. Complex Solutions of aQuadratic Equation. Fundamental Theorem ofAlgebra. The Complex Plane. Operations withComplex Numbers in Polar Form. Roots of Degree n
1.5. SEQUENCES AND LIMITS 49
Finite and Infinite Sequences. ArithmeticSequences. Geometric Sequences. Propertiesof Sequences. Limit of a Sequence. SelectedSequences. Properties of limits. Convergence toInfinity. Properties of Infinite Limits
UNIVARIATE CALCULUS 62
2.1. LIMITS AND CONTINUITY 62
Limits. Properties of Limits. Continuity.Combinations of Continuous Functions. Propertiesof Continuous Functions. Locating Roots ofEquations. Infinite Limits. Vertical Asymptotes.Limits at Infinity (the End Behavior). ObliqueAsymptotes. Infinite Limits at Infinity. Selected Limits
2.2. THE DERIVATIVE 80
Differentiability at a Point. The Derivative Function. Differential. Techniques of Differentiation.
Higher Derivatives. Implicit Differentiation L'Hopital's Rule. Mean-Value Theorem. Graph Sketching. A General Graphing Procedure
2.3. INTEGRATION 99
The Indefinite Integral. Properties of the IndefiniteIntegral. The Definite Integral (Riemann Integral)The Fundamental Theorem of Calculus. ImproperIntegrals. Specificity of the integration techniquesfor evaluating definite integrals
2.4. TAYLOR POLYNOMIAL 122
2.5. SERIES 127The Integral Test. The Comparison Test.Alternating Series Test. The Ratio Test. The RootTest. Power Series. The Taylor series.
INDEX 140

PRECALCULUS

1.1. BASIC NOTATIONS

Signs and Symbols

$N=\{1,2, \ldots\}$	set of natural numbers
$Z=\{0, \pm 1, \pm 2, \ldots\}$	set of integer numbers
$Q=\left\{\left.\frac{a}{b} \right\rvert\, a, b \in Z, b \neq 0\right\}$	set of rational numbers
R	set of real numbers
$C=\left\{a+b i \mid a, b \in R, i^{2}=-1\right\}$	set of complex numbers
$a=b$	a equals b, a is equal to b, identity
$a \neq b$	a is not equal to b, a does not equal to b, a is other than b
$a<b$	a is less than b
$a \leq b$	a is less than or equal to b
$a>b$	a is greater than b
$a \geq b$	a is greater than or equal to b
$a>0$	a is a positive number, a is greater than 0
$a \geq 0$	a is a non-negative number

$a+b$	addition, a plus b, sum of a and b, a, b are the summands
$a-b$	subtraction, a minus b, difference between a and b
$a \cdot b$	multiplication, a times b, product of a and b, a, b are the factors
$\frac{a}{b}$	division, a divided by b, a over b, quotient of a and b, a is the numerator, b is the denominator
$1 / 2,2 / 3,21 / 2$	one half, two thirds, two and a half
0.01	nought point nought one
$5 \%, 2 / 5 \%$	five per cent, two fifth per cent
$\sum_{i=1}^{n} a_{i}=a_{1}+\ldots+a_{n}$	sum over a_{i} of i equals 1 up to n
$\prod_{i=1}^{n} a_{i}=a_{1} \cdot \ldots \cdot a_{n}$	product over a_{i} of i equals 1 up to n
∞	infinity

Functions

$f: X \rightarrow Y$	f is a transformation of X into Y
$X, D(f)=f^{-1}(Y)$	domain of f
$Y, R(f)=f(X)$	codomain of f, range of f
x^{n}	x to the power of n, nth power of x for $n \geq 0$
x^{2}	x squared

x^{3}	x cubed
$\sqrt{x}, \sqrt[n]{x}$	square root of x, n-th root of x
n !	n factorial
$\|x\|$	absolute value of x
$\operatorname{sgn} x$	$\begin{aligned} & \operatorname{sign} \text { of } x(\operatorname{sgn} 5=1, \operatorname{sgn}-3=-1, \\ & \operatorname{sgn} 0=0) \end{aligned}$
$e^{x}, \exp x$	exponential function of x, e to the power of x
$\log _{a} x$	logarithm (log) of x (to) base a
$\ln x$	natural logarithm (log) of x (to base e)
$\sin x$	sine of x
$\cos x$	cosine of x
$\sec x=\frac{1}{\cos x}$	secant of x
$\csc x=\frac{1}{\sin x}$	cosecant of x
$\tan x, \operatorname{tg} x$	tangent of x
$\cot x, \operatorname{ctg} x$	cotangent of x
$\arcsin x, \sin ^{-1} x$	arc sine of x, inverse sine of x
$\arccos x, \cos ^{-1} x$	arc cosine of x, inverse cosine of x
$\arctan x, \operatorname{arctg} x$	arc tangent of x, inverse tangent of x

Sets

$\{a, b, c, \ldots\}$	set with the elements a, b, c, \ldots
$a \in A$	a is an element of A, e.g. $3 \in \mathrm{Z}(3$ is an integer $)$

$a \notin A$	a is an element of A, e.g. $\sqrt{2} \notin \mathrm{Q}(\sqrt{2}$ is not rational number)
$\{x \in M \mid P(x)\}$	The set of all elements in M satisfying condition P, e.g. $\{x \in \mathrm{Z} \mid 2<x<5\}=\{3,4\}$
$A \subseteq B$	A is a subset of B (any element of A is an element of $B), A$ is included in B
$A \subset B$	A is a proper subset of B (is a subset and unequal)
$A \cup B$	A union B, A or B, includes all occurring elements $(x$ is in $A \cup B$ if and only if x is in A or x is in $B)$
$A \cap B$	A intersection B, A and B, includes all common elements $(x$ is in $A \cup B$ if and only if x is in A and x is in $B)$
$A \backslash B$	A not B include all elements of A that are not in B
$A \times B$	A cross B, cartesian product of A and B, set of all (ordered) pairs from A and B
$\underbrace{A \times \ldots \times A}_{n}=A^{n}$	the set of all ordered n-tuples $\left(x_{1}, \ldots, x_{n}\right)$, $x_{i} \in A, i=1, \ldots, n$, e.g. $\mathrm{R}^{2}, \mathrm{R}^{3}$
\varnothing	Empty set

Greek Alphabet

Letters (upper case, lower case)	Name	Pronunciation
A α	alpha	'ælfə
B β	beta	'bi:tə
$\Gamma \gamma$	gamma	'gæmə
$\Delta \delta$	delta	'deltə

$\mathrm{E} \varepsilon$	epsilon	'epsəlon
$\Xi \xi$	xi	ksai
H η	eta	'i:tə
Z ζ	zeta	'zi:tə
I 1	iota	ai'əutə
K κ	kappa	'кæрә
$\Lambda \lambda$	lambda	'læmbə
$\mathrm{M} \mu$	mu	'mju:
N v	nu	'nju:
O o	omicron	'əuməkrun
$\Pi \pi$	pi	pai
$\mathrm{P} \rho$	rho	rəu
$\Sigma \sigma$	sigma	'sigmə
T τ	tau	tav
$\Upsilon \cup$	upsilon	'npsəlun
$\Theta \theta$	theta	'өi:tə
$\Phi \varphi$	phi	fai
$\Psi \psi$	psi	psai
X χ	chi	kai
$\Omega \omega$	omega	əu'migə

1.2. GRAPHS ON THE CARTESIAN PLANE

Rectangular coordinates

Ordered pairs of real numbers can be represented by points in a plane called the rectangular coordinate system, or the Cartesian plane (Figure 1).

Figure 1. Coordinate system
The horizontal real number line is usually called the \boldsymbol{x}-axis, and the vertical real number line is usually called the \boldsymbol{y}-axis. The point of intersection of these two axes is the origin, and the two axes divide the plane into four quadrants.

The scatter plot is a way to represent the data graphically. To sketch a scatter plot of the data presented by a finite number of pairs (x, y), plot the points (x, y).

Pythagorean Theorem and the Distance Formula

For a right triangle with hypotenuse length c and sides lengths a and b, we have

$$
a^{2}+b^{2}=c^{2} .
$$

The converse is also true. That is, if $a^{2}+b^{2}=c^{2}$, then the triangle is a right triangle.

The distance d between the points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ in the plane is (Fig 2)

$$
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

Figure 2. D2-distance

The Midpoint Formula

The midpoint M of the line segment joining the points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is

$$
M=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)
$$

Example. The production of Lada-Vesta cars in January 2021 amounted to 8879, and in March - to 13349. Without knowing any additional information, what would be estimated the February 2021 production? (Source: AvtoVAZ OJSC).

Let $\left(n, Q_{n}\right)$ be production in month n of year 2021. Assuming that production followed a linear pattern, we
suppose that $\left(2, Q_{2}\right)$ is the midpoint of the line segment joining the points $\left(1, Q_{1}\right)$ and $\left(3, Q_{3}\right)$. So

$$
\left(2, Q_{2}\right)=\left(\frac{1+3}{2}, \frac{8879+13349}{2}\right)=(2,11114) .
$$

Thus, the February production is estimated at 11114. The actual amount is 11298 . The error is about 1.6%.

To shift a point a units to the right, add a to the x-coordinate. To shift a point b units up, add b to the y-coordinate: if (x, y) is an original point then the translated point is $(x+a, y+b)$.

The Graph of an Equation

Let $F(x, y)=0$ be an equation relating x and y. The graph of this equation is the set of the solution points, i.e. the points (x, y) satisfying $F(x, y)=0$. In particularly, the graph of a function $y=f(x)$ is the set of points (x, y) such that $y=f(x)$.

Solution points of an equation that have zero as either the x-coordinate or the y-coordinate are called intercepts.

To find x-intercepts, we have to solve the equation $F(x, 0)=0$. To find y-intercepts, we have to solve the equation $F(0, y)=0$. If $y=f(x)$ and $f(x)$ is defined at $x=0$ then the y-intercept is $(0, f(0))$. To find x-intercepts, we have to solve the equation $f(x)=0$.

A graph is symmetric with respect to the x-axis if, whenever (x, y) is on the graph, $(x,-y)$ is also on the graph (replacing y with $-y$ yields an equivalent equation).

A graph is symmetric with respect to the y-axis if, whenever (x, y) is on the graph, $(-x, y)$ is also on the graph (replacing x with $-x$ yields an equivalent equation).

A graph is symmetric with respect to the origin if, whenever (x, y) is on the graph, $(-x,-y)$ is also on the graph
(replacing x with $-x$ and y with $-y$ yields an equivalent equation).

The graph of a linear equation

$$
y=m x+b
$$

is a line whose slope is m and whose y-intercept is $(0, b)$ (Figure 3).

a) Positive slope, line rises
b) Negative slope, line falls

Figure 3. Lines
A vertical line has an equation of the form $x=a$. The slope of a vertical line is undefined.

The ratio

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

represents the slope of the line that passes through the points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$. The equation of the line with slope m passing through the point $\left(x_{1}, y_{1}\right)$ may be written as follows

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

(point-slope form).

The graph of a quadratic equation

$$
y=a x^{2}+b x+c
$$

with $a \neq 0$ is parabola. Parabola is a U -shaped curve. Any parabola is symmetric with respect to its axis. The point where the axis intersects the parabola is the vertex of the parabola. When the leading coefficient a is positive, the parabola opens upward. When a is negative, the parabola opens downwards (Figure 4).

(a)
(b)

Leading coefficient is positive Vertex is the lowest point Parabola opens upward

Leading coefficient is negative Vertex is the highest point Parabola opens downward

Figure 4. Parabolas

The graph of equation

$$
(x-a)^{2}+(y-b)^{2}=r^{2}
$$

is a circle with its center at (a, b) and radius r.

Figure 5. A circle with its center at (a,b) and radius r

1.3. FUNCTIONS

Basic Notions

A function f from a set X to a set Y assigns to each element $x \in X$ exactly one element $y \in Y$. The set X is the domain (or set of inputs) of the function f, and the set Y contains the range (or set of outputs). The domain of f is denoted by $D(f)$ or D_{f} and the range by $R(f)$ or R_{f}.

If A is a subset of $D(f)$ then $f(A)$ is the set of all y such that $y=f(x)$ for some $x \in A$. Obviously $f\left(D_{f}\right)=R_{f}$.

The composition of the function f with the function g is defined for x and assigns $f(g(x))$ to x if $g(x) \in D_{f}$. The function f is the outer function; the function g is the inner function.

Example. Let $f(x)=x^{2}$ and $g(x)=x+1$. Then $f(g(x))=(x+1)^{2}$ considering $f(x)=x^{2}$ as the outer function, and $g(x)=x+1$ as the inner function. Similarly, considering $g(x)=x+1$ as the outer function, and $f(x)=x^{2}$ as the inner function we get $g(f(x))=x^{2}+1$.

Let f and g be functions. The function g is the inverse function of the function f if the following conditions hold: $f(g(x))=x$ for every $x \in D_{g} ; g(f(x))=x$ for every $x \in D_{f}$.

The function g is denoted by f^{-1} (read " f-inverse"). By the definition

$$
f\left(f^{-1}(x)\right)=x \text { and } f^{-1}(f(x))=x .
$$

If g is the inverse function of f, then it must also be true that f is the inverse function of g. So, the functions f and g are inverse functions of each other.

A function f has an inverse function if and only if f is one-to-one, i.e. each value of y dependent variable corresponds to exactly one value of the independent variable. In other words, equation $f(x)=y$ has the only solution for every y from the range of f.

