

В.Б. Гисин

МАТЕМАТИКА МАТЕМАТИЧЕСКИЙ АНАЛИЗ 1

УДК 519.85 ББК 22.16 Г51

Рецензенты:

А.В. Чечкин, доктор физико-математических наук, профессор департамента математики Финансового университета при Правительстве Российской Федерации;

О.Е.Орел, кандидат физико-математических наук, доцент кафедры высшей математики Московского физикотехнического института (МФТИ).

Гисин В.Б.

Г51 Математика. Математический анализ 1: Учебное пособие / В.Б. Гисин. — М.: Прометей, 2023. — 148 с.

ISBN 978-5-00172-481-0

Математика. Математический анализ 1: учебное пособие для студентов, обучающихся по направлению «Экономика» 38.03.01 — программа подготовки бакалавра

Пособие предназначено для студентов, изучающих математику на английском языке. Пособие содержит учебный материал, относящийся к введению в математический анализ и таким его разделам, как дифференциальное и интегральное исчисление функций одной переменной.

00172-481-0 © Издатель

© В.Б. Гисин, 2023 © Издательство «Прометей», 2023

ISBN 978-5-00172-481-0

CONTENTS

PRECALCULUS
1.1. BASIC NOTATIONS 6
Signs and Symbols. Functions. Sets. Greek Alphabet
1.2. GRAPHS ON THE CARTESIAN PLANE11
Rectangular coordinates. The Graph of an Equation
1.3. FUNCTIONS16
Basic Notions. Elementary Functions. Symmetry.
Transformations. Basic Shapes
1.4. COMPLEX NUMBERS
The Set of Complex Numbers. Addition,
Subtraction, and Multiplication of Complex
Numbers. Complex Conjugate. A Quotient of
Complex Numbers. Complex Solutions of a
Quadratic Equation. Fundamental Theorem of
Algebra. The Complex Plane. Operations with
Complex Numbers in Polar Form. Roots of Degree n
1.5. SEQUENCES AND LIMITS49
Finite and Infinite Sequences. Arithmetic
Sequences. Geometric Sequences. Properties
of Sequences. Limit of a Sequence. Selected
Sequences. Properties of limits. Convergence to
Infinity. Properties of Infinite Limits
UNIVARIATE CALCULUS
2.1. LIMITS AND CONTINUITY62
Limits. Properties of Limits. Continuity.
Combinations of Continuous Functions. Properties
of Continuous Functions. Locating Roots of
Equations. Infinite Limits. Vertical Asymptotes.
Limits at Infinity (the End Behavior). Oblique
Asymptotes. Infinite Limits at Infinity. Selected Limits
2.2. THE DERIVATIVE80
Differentiability at a Point. The Derivative
Function. Differential. Techniques of Differentiation.

Higher Derivatives. Implicit Differentiation L'Hopital's Rule. Mean-Value Theorem. Graph
Sketching. A General Graphing Procedure
2.3. INTEGRATION99
The Indefinite Integral. Properties of the Indefinite
Integral. The Definite Integral (Riemann Integral)
The Fundamental Theorem of Calculus. Improper
Integrals. Specificity of the integration techniques
for evaluating definite integrals
2.4. TAYLOR POLYNOMIAL122
2.5. SERIES 127
The Integral Test. The Comparison Test.
Alternating Series Test. The Ratio Test. The Root
Test. Power Series. The Taylor series.
INDEX

PRECALCULUS

1.1. BASIC NOTATIONS

Signs and Symbols

$N = \{1, 2,\}$	set of natural numbers
$Z = \{0, \pm 1, \pm 2,\}$	set of integer numbers
$Q = \{\frac{a}{b} \mid a, b \in Z, b \neq 0\}$	set of rational numbers
R	set of real numbers
$C = \{a + bi \mid a, b \in R, i^2 = -1\}$	set of complex numbers
<i>a</i> = <i>b</i>	a equals b , a is equal to b , identity
$a \neq b$	a is not equal to b , a does not equal to b , a is other than b
a < b	a is less than b
$a \leq b$	a is less than or equal to b
a > b	a is greater than b
$a \ge b$	a is greater than or equal to b
<i>a</i> > 0	<i>a</i> is a positive number, <i>a</i> is greater than 0
$a \ge 0$	<i>a</i> is a non-negative number

a+b	addition, a plus b , sum of a and b , a , b are the summands	
a – b	subtraction, a minus b , difference between a and b	
$a \cdot b$	multiplication, a times b , product of a and b , a , b are the factors	
$\frac{a}{b}$	division, <i>a</i> divided by <i>b</i> , <i>a</i> over <i>b</i> , quotient of <i>a</i> and <i>b</i> , <i>a</i> is the numerator, <i>b</i> is the denominator	
$\frac{1}{2}, \frac{2}{3}, \frac{2}{2}$	one half, two thirds, two and a half	
0.01	nought point nought one	
5%, 2/5%	five per cent, two fifth per cent	
$\sum_{i=1}^n a_i = a_1 + \ldots + a_n$	sum over a_i of i equals 1 up to n	
$\prod_{i=1}^n a_i = a_1 \cdot \ldots \cdot a_n$	product over a_i of i equals 1 up to n	
∞	infinity	

Functions

$f: X \to Y$	f is a transformation of X into Y
$X, D(f) = f^{-1}(Y)$	domain of f
Y, R(f) = f(X)	codomain of <i>f</i> , range of <i>f</i>
x^n	x to the power of n , n th power of x for $n \ge 0$
x^2	x squared

x^3	x cubed	
\sqrt{x} , $\sqrt[n]{x}$	square root of x , n -th root of x	
<i>n</i> !	n factorial	
	absolute value of <i>x</i>	
sgn x	sign of x (sgn $5 = 1$, sgn $-3 = -1$, sgn $0 = 0$)	
e^x , $\exp x$	exponential function of x , e to the power of x	
$\log_a x$	logarithm (log) of x (to) base a	
$\ln x$	natural logarithm (log) of x (to base e)	
$\sin x$	sine of <i>x</i>	
$\cos x$	cosine of <i>x</i>	
$\sec x = \frac{1}{\cos x}$	secant of x	
$\csc x = \frac{1}{\sin x}$	cosecant of x	
$\tan x$, $\operatorname{tg} x$	tangent of x	
$\cot x$, $\operatorname{ctg} x$	cotangent of x	
$\arcsin x$, $\sin^{-1} x$	arc sine of <i>x</i> , inverse sine of <i>x</i>	
$\arccos x, \cos^{-1} x$	arc cosine of x , inverse cosine of x	
$\arctan x$, $\arctan x$	arc tangent of x , inverse tangent of x	

Sets

a,b,c,	set with the elements $a, b, c,$	
$a \in A$	<i>a</i> is an element of <i>A</i> , e.g. $3 \in \mathbb{Z}$ (3 is an integer)	

$a \notin A$	a is an element of A, e.g. $\sqrt{2} \notin Q$ ($\sqrt{2}$ is	
	not rational number)	
$\left\{x\in M P(x)\right\}$	The set of all elements in M satisfying condition P, e.g. $\{x \in Z 2 < x < 5\} = \{3, 4\}$	
$A \subseteq B$	A is a subset of B (any element of A is an element of B), A is included in B	
$A \subset B$	A is a proper subset of B (is a subset and unequal)	
$A \cup B$	A union B, A or B, includes all occurring elements (x is in $A \cup B$ if and only if x is in A or x is in B)	
$A \cap B$	A intersection B , A and B , includes all common elements (x is in $A \cup B$ if and only if x is in A and x is in B)	
$A \setminus B$	A not B include all elements of A that are not in B	
$A \times B$	A cross B , cartesian product of A and B , set of all (ordered) pairs from A and B	
$\underbrace{A \times \dots \times A}_{n} = A^{n}$	the set of all ordered <i>n</i> -tuples $(x_1,,x_n)$, $x_i \in A$, $i=1,,n$, e.g. $\mathbb{R}^2,\mathbb{R}^3$	
Ø	Empty set	

Greek Alphabet

Letters (upper case, lower case)	Name	Pronunciation
Αα	alpha	′ælfə
Ββ	beta	′bi:tə
Γγ	gamma	′gæmə
Δδ	delta	'deltə

Εε	epsilon	'epsəlɔn
Ξξ	xi	ksai
Ηη	eta	′i:tə
Ζζ	zeta	′zi:tə
Iι	iota	ai'əʊtə
Кк	kappa	′kæpə
Λ λ	lambda	′læmbə
Μ μ	mu	′mju:
Νν	nu	′nju:
0 o	omicron	′əບməkrun
Ππ	pi	pai
Ρρ	rho	rəu
Σσ	sigma	′sigmə
Ττ	tau	taυ
Υυ	upsilon	'ʌpsəlʊn
Θθ	theta	′θi:tə
Φφ	phi	fai
Ψψ	psi	psai
Χχ	chi	kai
Ωω	omega	ə∪′migə

1.2. GRAPHS ON THE CARTESIAN PLANE

Rectangular coordinates

Ordered pairs of real numbers can be represented by points in a plane called the *rectangular coordinate system*, or the *Cartesian plane* (Figure 1).

Figure 1. Coordinate system

The horizontal real number line is usually called the x-axis, and the vertical real number line is usually called the y-axis. The point of intersection of these two axes is the origin, and the two axes divide the plane into four *quadrants*.

The scatter plot is a way to represent the data graphically. To sketch a scatter plot of the data presented by a finite number of pairs (x, y), plot the points (x, y).

Pythagorean Theorem and the Distance Formula

For a right triangle with hypotenuse length c and sides lengths a and b, we have

$$a^2 + b^2 = c^2$$
.

The converse is also true. That is, if $a^2 + b^2 = c^2$, then the triangle is a right triangle.

The distance d between the points (x_1, y_1) and (x_2, y_2) in the plane is (Fig 2)

Figure 2. D2-distance

The Midpoint Formula

The midpoint M of the line segment joining the points (x_1, y_1) and (x_2, y_2) is

$$M = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right).$$

Example. The production of Lada-Vesta cars in January 2021 amounted to 8879, and in March — to 13349. Without knowing any additional information, what would be estimated the February 2021 production? (Source: AvtoVAZ OJSC).

Let (n,Q_n) be production in month n of year 2021. Assuming that production followed a linear pattern, we suppose that $(2,Q_2)$ is the midpoint of the line segment joining the points $(1,Q_1)$ and $(3,Q_3)$. So

$$(2, Q_2) = \left(\frac{1+3}{2}, \frac{8879+13349}{2}\right) = (2, 11114).$$

Thus, the February production is estimated at 11114. The actual amount is 11298. The error is about 1.6%.

To shift a point *a* units to the right, add *a* to the *x*-coordinate. To shift a point *b* units up, add *b* to the *y*-coordinate: if (x, y) is an original point then the translated point is (x+a, y+b).

The Graph of an Equation

Let F(x,y)=0 be an equation relating x and y. The graph of this equation is the set of the solution points, i.e. the points (x,y) satisfying F(x,y)=0. In particularly, the graph of a function y=f(x) is the set of points (x,y) such that y=f(x).

Solution points of an equation that have zero as either the *x*-coordinate or the *y*-coordinate are called *intercepts*.

To find x-intercepts, we have to solve the equation F(x,0) = 0. To find y-intercepts, we have to solve the equation F(0,y) = 0. If y = f(x) and f(x) is defined at x = 0 then the y-intercept is (0, f(0)). To find x-intercepts, we have to solve the equation f(x) = 0.

A graph is symmetric with respect to the x-axis if, whenever (x, y) is on the graph, (x, -y) is also on the graph (replacing y with -y yields an equivalent equation).

A graph is symmetric with respect to the y-axis if, whenever (x, y) is on the graph, (-x, y) is also on the graph (replacing x with -x yields an equivalent equation).

A graph is symmetric with respect to the origin if, whenever (x, y) is on the graph, (-x, -y) is also on the graph (replacing x with -x and y with -y yields an equivalent equation).

The graph of a linear equation

y = mx + b

is a line whose *slope* is m and whose y-intercept is (0, b) (Figure 3).

a) Positive slope, line rises b) Negative slope, line falls Figure 3. Lines

A vertical line has an equation of the form x = a. The slope of a vertical line is undefined.

The ratio

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

represents the slope of the line that passes through the points (x_1, y_1) and (x_2, y_2) . The equation of the line with slope m passing through the point (x_1, y_1) may be written as follows

$$y - y_1 = m(x - x_1)$$

(point-slope form).

The graph of a quadratic equation

$$y = ax^2 + bx + c$$

with $a \neq 0$ is *parabola*. Parabola is a U-shaped curve. Any parabola is symmetric with respect to its axis. The point where the axis intersects the parabola is the *vertex* of the parabola. When the leading coefficient a is positive, the parabola opens upward. When a is negative, the parabola opens downwards (Figure 4).

Leading coefficient is positive Leading coefficient is negative Vertex is the lowest point Parabola opens upward

Vertex is the highest point Parabola opens downward

Figure 4. Parabolas

The graph of equation

$$(x-a)^{2} + (y-b)^{2} = r^{2}$$

is a *circle* with its center at (a,b) and radius r.

1.3. FUNCTIONS

Basic Notions

A function f from a set X to a set Y assigns to each element $x \in X$ exactly one element $y \in Y$. The set X is the *domain* (or set of inputs) of the function f, and the set Ycontains the *range* (or set of outputs). The domain of f is denoted by D(f) or D_f and the range by R(f) or R_f .

If A is a subset of D(f) then f(A) is the set of all y such that y = f(x) for some $x \in A$. Obviously $f(D_f) = R_f$.

The *composition* of the function f with the function g is defined for x and assigns f(g(x)) to x if $g(x) \in D_f$. The function f is the outer function; the function g is the inner function.

Example. Let $f(x) = x^2$ and g(x) = x+1. Then $f(g(x)) = (x+1)^2$ considering $f(x) = x^2$ as the outer function, and g(x) = x+1 as the inner function. Similarly, considering g(x) = x+1 as the outer function, and $f(x) = x^2$ as the inner function we get $g(f(x)) = x^2 + 1$.

Let f and g be functions. The function g is the *inverse* function of the function f if the following conditions hold: f(g(x)) = x for every $x \in D_g$; g(f(x)) = x for every $x \in D_f$.

The function g is denoted by f^{-1} (read "*f*-inverse"). By the definition

$$f(f^{-1}(x)) = x$$
 and $f^{-1}(f(x)) = x$.

If g is the inverse function of f, then it must also be true that f is the inverse function of g. So, the functions f and g are inverse functions of each other.

A function f has an inverse function if and only if f is one-to-one, i.e. each value of y dependent variable corresponds to exactly one value of the independent variable. In other words, equation f(x) = y has the only solution for every y from the range of f.