Создаем робота-андроида своими руками

Текст
Читать фрагмент
Читайте только на ЛитРес!
Отметить прочитанной
Как читать книгу после покупки
  • Чтение только в Литрес «Читай!»
Создаем робота-андроида своими руками
Шрифт:Меньше АаБольше Аа

Введение

Создание электронных устройств является интересным и увлекательным занятием, а конструирование роботов может принести наибольшее удовлетворение. В этом случае вам придется создавать не только электронные схемы и узлы, но воспользоваться некоторыми другими технологиями. Создание робота включает решение следующих технологических проблем:

• система питания устройства

• моторы и сервомеханизмы для обеспечения движения и перемещения устройства

• системы чувствительных датчиков (сенсоров)

• элементы искусственного интеллекта

По каждой из этих проблем существует многочисленная специальная литература, и очевидно, что объем одной книги не позволит охватить все многообразие применяемых технологий. Тем не менее мы коснемся большинства из них, что позволит вам получить начальные представления о задаче и может послужить основой для дальнейшего самостоятельного экспериментирования.

Робототехника является развивающейся дисциплиной. Многие подходы известны уже сегодня, но вряд ли кто-нибудь сможет сказать, какие методы и технологии конструирования будут использоваться через сто лет. Как и биологические системы, робототехника развивается в соответствии с Дарвиновской моделью «естественного отбора».

Занявшись созданием роботов, вы не останетесь в одиночестве. Я был очень удивлен, когда узнал, что многие энтузиасты, государственные организации, частные фирмы, спортивные и технические клубы занимаются вопросами любительского конструирования роботов. Наиболее «продвинутой» программой по робототехнике из тех, которые я когда-либо видел, обладает американское космическое агентство НАСА. Большинство разработок можно найти в открытом доступе. Если у вас есть Интернет – воспользуйтесь любой поисковой системой (Yahoo, Exite и т. д.) по ключевому слову robotics. Вы найдете массу информации, посвященной робототехнике, на сайтах различных компаний, университетов, клубов, форумов и просто энтузиастов.

Благодарности

Я хотел бы выразить благодарность некоторым коллегам, оказавшим неоценимую помощь при создании этой книги: Мэтту Вагнеру, моему агенту в Waterside Productions, Скотту Грилло, помогавшему выдержать график работы, и Стефану Смиту за большую помощь в редактировании текста.

Глава 1
Начало

Некоторые историки считают, что началом робототехники можно считать времена античной Греции. Примерно в 270 году до н. э. греческий инженер Ктесибус создавал музыкальные органы и клепсидры (водяные часы), в которых имелись движущиеся фигуры.

Другие историки полагают, что робототехника началась с появлением механических кукол. Примерно в 1770 году Пьер Жаке-Дрю – швейцарский часовой мастер и изобретатель наручных часов изготовил три замечательные куклы. Одна из созданных им кукол «умела» писать, другая – играть на органе, а третья – рисовать картины. Эти удивительные механические куклы, предназначенные для развлечения королевской семьи, проявляли свое «искусство» при помощи рычажков, шестеренок и пружин.

Позднее, в 1898 году, Никола Тесла построил дистанционно управляемую «ныряющую» лодку. Для 1898 года это было немалым достижением, и лодка демонстрировалась в Мэдисон Сквер Гарден. Тесла планировал создать лодку, способную к автономному плаванию, но за недостатком финансирования исследования пришлось прекратить.

Слово «робот» впервые появилось в 1921 году в пьесе «Р.У.Р.» (Россумские Универсальные Роботы), написанной знаменитым чешским драматургом Карелом Чапеком. Робот по-чешски означает «рабочий». В пьесе описывались механические слуги – «роботы». Когда этих роботов наделили человеческими эмоциями, они восстали против своих хозяев и уничтожили их.

Исторически можно найти немало примеров роботов – предметов неживой природы, копирующих человеческую внешность и некоторые человеческие «функции». Таких «человекоподобных» роботов принято называть андроидами.

С легкой руки Карела Чапека роботы стали главными героями многих научно-фантастических книг и фильмов. Развитие темы «роботов» привело к появлению их многочисленных разновидностей. Наряду со старомодными «железными» людьми, появились киборги – существа частично «человеческого», а частично – «машинного» происхождения, и андроиды — роботы, имеющие человеческий облик.

Многие впервые увидели «настоящего» робота на всемирной ярмарке 1939 года. Фирма Westinghouse Electric создала робота Electro – движущегося человека. У робота Electro имелись моторчики и система приводов, позволявшие ему «двигать» ногами, руками и ртом. Робот не «умел» делать никакой полезной работы – его просто демонстрировали на сцене в компании «механической» собаки Спарко.

Зачем создавать роботов?

Применение роботов оказалось совершенно необходимым для многих производств, прежде всего потому, что стоимость «труда» робота оказалось значительно ниже стоимости такой же операции, производимой работником – человеком. Более того, робота достаточно запрограммировать один раз, и он будет совершать требуемое действие с точностью, превосходящей точность работы любого квалифицированного рабочего. С другой стороны, человек способен выполнять различные задания и с этой точки зрения является значительно более гибким. Роботы, как правило, предназначены для выполнения какой-то одной операции. Например, робота, предназначенного для сварки, вряд ли удастся «научить» считать детали в бункере.

Существующие наиболее совершенные промышленные роботы очень скоро превратятся в «динозавров». Сегодняшняя «младенческая» стадия эволюции роботов заканчивается, появляются новые, гораздо более универсальные роботы, вбирающие в себя все новые качества человеческого интеллекта.

Персональный компьютер уже произвел переворот в обществе, но «персональный» робот еще не появился. Причина очевидна – создание такого робота намного сложнее. Помимо развитого интеллекта он должен хорошо «уметь» ориентироваться и перемещаться в пространстве и осуществлять необходимые манипуляции для достижения поставленной цели.

Применение роботов

Понятно, что гораздо проще создать «домашнего» робота, выполняющего какую-то одну работу. Например, уже сегодня существуют небольшие мобильные роботы, которые могут «самостоятельно» постричь траву на газоне. Эти роботы работают от солнечных батарей и не требуют программирования. По периметру газона закапывается провод; робот чувствует этот провод и остается внутри периметра, не выходя за его пределы.

Создание полезного персонального робота очень сложно. Вообще говоря, эта проблема выходит за рамки данной книги, да, пожалуй, и любой современной книги по робототехнике. Резонно спросить – а какова вообще тогда цель этой книги? Я надеюсь, что, прочитав эту книгу и построив несколько моделей роботов, вы приобретете необходимый опыт и сможете внести свой вклад в развитие робототехники.

Способность к созданию нового не есть необходимая принадлежность исключительно университетского диплома. Роботы создаются отнюдь не только учеными в стенах университетов и промышленных компаний. Экспериментируя и «играя» с роботами, вы можете научиться многим полезным вещам: работе искусственного интеллекта, принципам нейросетей, грамотной постановке целей, задачам «навигации», работе сенсоров и исполнительных механизмов и т. д. Первоначальное знакомство с основами робототехники может перерасти в ее серьезное изучение. И с этой точки зрения «любительская» робототехника вносит свой вклад, подчас предлагая изящные и оригинальные решения, превосходящие «профессиональные».

Как говорится в поговорке: «Семь раз отмерь – один раз отрежь». Прежде чем начать строить робота, задайте себе вопрос: «Для какой цели он предназначен? Что он будет делать и каким образом?» Моей мечтой является создание маленького робота, который бы автоматически обслуживал кошачий туалет.

Эта книга содержит необходимую информацию об электрических схемах, «чувствительных» элементах, системах, обеспечивающих движение, нейронных сетях и микроконтроллерах, которые могут потребоваться при создании робота. Но перед тем как мы приступим, рассмотрим некоторые известные и возможные будущие области применения роботов. В настоящее время наиболее совершенные роботы создаются инженерами НАСА и военными специалистами. Нетрудно догадаться, что НАСА использует роботов для исследования космического пространства и организации дистанционной передачи информации. С другой стороны, военные пытаются использовать роботов в военных целях.

Исследования

НАСА регулярно посылает беспилотные автоматические станции в тех случаях, когда отправка космонавтов-исследователей не представляется возможной. Главная причина такого решения проста – экономика. Гораздо дешевле послать в космос «невозвращаемого» робота, чем человека. Космонавту требуются специальные условия: воздух для дыхания, еда, тепло и достаточное жизненное пространство. И, говоря откровенно, понятным желанием космонавта является выжить в космической экспедиции и вернуться на Землю, так сказать, «при жизни».

Космическая станция совершает полет по солнечной системе и с помощью своих «электронных» глаз передает на Землю впечатляющие картины планет и их спутников. Автоматическая станция Viking искала на Марсе признаки жизни и передавала на землю фотографии марсианского ландшафта. НАСА разрабатывает вездеходы для исследования планет, космические зонды, специальные вездеходы на «паучьих» лапах и подводные вездеходы. В настоящее время у НАСА имеются лучшие в мире программы по дистанционному управлению роботами, создаваемые Агентством космического управления и технологий (OSAT).

НАСА утверждает, что в 2004 году более 50 процентов действий вне космического корабля будет осуществляться через системы дистанционного управления. Более подробные объяснения принципов дистанционного управления и наблюдения можно найти в главе 9.

 

Роботизованные космические станции, запущенные с Земли, дали возможность наблюдать потрясающие воображение виды соседних планет солнечной системы. В наш век сокращающихся бюджетов роботы-исследователи наилучшим образом смогут использовать средства налогоплательщиков. Понятно, что автоматические роботизованные станции обходятся значительно дешевле обитаемых. Вот один пример. Марсианский следопыт (Pathfinder) как раз представляет новое поколение недорогих космических исследовательских устройств.

Марсианский следопыт (Sojourner)

Марсианский «следопыт» состоит из спускаемого аппарата и марсохода. Он был запущен с Земли в декабре 1996 года с помощью ракеты-носителя McDonnel Douglas Delta II и начал свое путешествие к Марсу. Устройство достигло поверхности Марса 4 июля 1997 года.

«Следопыт» не вышел на круговую орбиту Марса, вместо этого он влетел в марсианскую атмосферу на скорости 27 тыс. км/ч, или 7,6 км/с. Для предотвращения сгорания аппарата в атмосфере были предусмотрены: жаропрочная внешняя оболочка, парашюты, тормозные ракеты и воздушные подушки. Хотя приземление было смягчено подушками, ускорение при ударе достигло 40 g.

«Следопыт» приземлился в районе Ares Vallis. Место посадки находится в устье древнего русла марсианского «канала» – месте, где в зоне доступности марсохода может оказаться много различных горных пород. Предположительно эти породы были смыты с марсианских гор в те времена, когда на Марсе существовали водяные потоки. После посадки спускаемый аппарат раскрылся (см. рис. 1.1) и «выпустил» автоматический марсоход.

Рис. 1.1. Марсианский следопыт. Фото НАСА


Сам вездеход, или марсоход, доставленный «Следопытом» был назван «Попутчик» (Sojourner). «Попутчик» представляет собой новый класс небольших роботизованных исследовательских комплексов, иногда называемых «микровездеходами». При весе всего в 10,5 кг он имеет размеры: 280 мм в высоту, 630 мм в длину и 480 мм в ширину. Марсоход снабжен уникальной шестиколесной системой передвижения (Rocher-Bogie – горная повозка), разработанной Jet Propulsion Laboratories (JPL) в конце 80-х годов. Основным источником энергии для марсохода служит панель солнечной батареи, содержащая более 200 элементов с отдаваемой мощностью батареи примерно 16 ватт. «Попутчик» начал исследование поверхности Марса в июле 1997 года. Перед этим этот робот был известен под именем Rocky IV. Совершенствование этого робота «микровездехода» прошло несколько стадий, отраженных в прототипах от Rocky I до Rocky IV.

И спускаемый аппарат, и сам марсоход снабжены системой стереовидеонаблюдения. Для определения состава горных пород марсоход имеет рентгеновский спектрометр для анализа альфа – частиц. Спускаемый аппарат имел оборудование для проведения атмосферных и метеорологических наблюдений, а также играл роль ретранслятора для передачи данных и картинок с марсохода на Землю.

Цель экспедиции. Марсоход «Попутчик» сам по себе являлся целью эксперимента. Данные, полученные от марсохода, подтвердили, что использование подобных «микровездеходов» экономически оправдано и полезно. В дополнение к заданиям, описанным выше, экспедиция преследовала следующие цели:

• Фотографирование ближних и дальних окрестностей поверхности Марса

• Анализ перемещения грунта

• Определение навигационного счисления местоположения на Марсе

• Измерение топкости марсианского грунта

• Запись данных о перемещениях устройства

• Определение тепловых режимов марсохода

• Контроль работы оптической системы устройства

• Определение качества УКВ связи

• Анализ смыва грунта

• Анализ сцепления грунта

• Оценка работы рентгеновского спектрометра альфа – частиц

• Оценка работы устройства разворачивания спектрометра

• Фотографирование спускаемого аппарата

• Оценка имеющихся повреждений

Контроль действий «Попутчика» осуществлялся дистанционно по командам с Земли. Оператор задавал перемещения марсоходу на основе визуальных данных, получаемых с самого марсохода и со спускаемого аппарата. В силу того что время задержки реакций марсохода по отношению к подаваемым с Земли командам составляло от 6 до 41 минуты в зависимости от взаимных положений Марса и Земли, для предотвращения фатальных действий, таких как падение с обрыва, аппарат имел бортовой интеллект.

Рис. 1.2. Марсоход «Попутчик». Фото НАСА


НАСА продолжает исследования в области создания роботизованных «микровездеходов». Для дальнейших исследований Марса планируется создание «интеллектуальных» вездеходов, способных к ориентированию, преодолению препятствий и принятию иных решений. Такие роботизованные системы максимально используют деньги налогоплательщиков.

Последний «микровездеход», предназначенный для очередной марсианской экспедиции, будет снова искать там признаки жизни. 7 августа 1996 года НАСА выпустило заявление, что оно надеется найти ископаемые микроскопические следы жизни на Марсе. Эта информация подогрела интерес к поискам жизни на Марсе.

Использование роботов в промышленности

Роботы незаменимы во многих отраслях производства. К примеру, роботы-сварщики повсеместно используются в производстве автомобилей. Другие роботы, снабженные краскораспылителями, занимаются покраской деталей. В радиоэлектронной промышленности роботы используются для пайки микроскопических проводников к полупроводниковым чипам (точечная сварка). Другие роботы, которых называют «взять и разместить», занимаются размещением интегральных микросхем на печатных платах. Этот процесс называется «набивкой» печатной платы.

Эти специализированные роботы совершают одну и ту же высокоточную работу изо дня в день. Для человека такая работа является скучной и утомительной – от однообразия наступает утомление, которое порождает ошибки. Производственные ошибки снижают продуктивность труда, что в свою очередь приводит к увеличению стоимости производства. Для конечного потребителя рост стоимости производства отражается в более высоких розничных ценах. Вместе с тем понятно, что в условиях конкуренции наиболее успешной окажется компания, имеющая лучшее соотношение цена-качество.

Роботы идеально подходят для монотонной, однообразной работы. Скорость их работы выше, они обходятся дешевле работников – людей и не подвержены усталости. Это является одной из причин низкой цены производимой продукции. Роботы позволяют повысить качество продукции и расширить границы прибыльности (конкурентоспособности) предприятия.

Проектирование и моделирование

Роботы оказались способны к выполнению не только циклических операций. Компании – производители широко используют системы компьютерного проектирования (computer aided design CAD), управляемого компьютерного производства (computer aided manufacturing CAM) и цифрового компьютерного контроля (computer numerical control CNC) для создания различных проектов, производства компонентов и контроля сборочного процесса. Эти технологии позволяют инженеру спроектировать устройство или деталь с помощью CAD и быстро получить опытный образец с помощью оборудования, управляемого компьютером. Компьютер оказывает поддержку на всех этапах – от проектирования до производства.

Опасные производства

В некоторых опасных производствах, связанных с риском для здоровья или жизни, люди могут быть успешно заменены роботами (см. рис. 1.3). К примеру, возьмем задачу обезвреживания бомб. Многие команды саперов широко используют роботов. Как правило, такие роботы имеют вид небольших бронированных танков и управляются дистанционно операторами, использующими видеокамеры, расположенные в передней части робота (система дистанционного видеоконтроля). Руки-манипуляторы робота способны захватить подозрительный предмет и поместить во взрывобезопасный контейнер для последующего подрыва или обезвреживания.

Рис. 1.3. Робот-спасатель. Фото НАСА


Подобные роботы позволяют очистить местность от токсичных отходов. Они в состоянии функционировать в условиях сильного химического или радиационного заражения среды. Роботы способны «работать» в условиях, где незащищенного человека ожидает быстрая смерть. Атомная промышленность первой начала разрабатывать и использовать роботизованные автоматические манипуляторы для работы с радиоактивными материалами. Эти манипуляторы позволили специалистам производить операции в радиоактивной зоне, находясь при этом в чистых и безопасных помещениях.

Эксплуатация и ремонт

Роботы-эксплуатационники были специально созданы для перемещений внутри трубопроводов, коллекторов и воздуховодных каналов с целью контроля их состояния и возможного ремонта. Оператор наблюдает за ходом процесса с помощью видеокамеры, закрепленной на роботе. При обнаружении повреждения оператор может эффективно и оперативно использовать робота для мелкого ремонта.

Роботы-пожарные

Во многих домах имеются огнетушители, а как насчет робота-пожарного? Такой робот может обнаружить возгорание в любой части помещения, самостоятельно переместиться туда и загасить огонь.

Идея робота-пожарного оказалась настолько популярной, что уже несколько лет проводятся соревнования между конструкторами подобных устройств. Эти соревнования спонсируются Trinity колледжем, обществом робототехники Коннектикута и некоторыми корпорациями. Как правило, робот-пожарный активируется по сигналу тревоги, поступившему по системе обнаружения огня. Во время соревнований роботу необходимо проложить путь в специальном «виртуальном» помещении, добраться до места возгорания и потушить огонь.

Роботы в медицине

Роботов, используемых в медицине, можно отнести к трем категориям. Роботы первой категории используются в диагностике. Весной 1992 года компания Neuromedical Systems Inc. of Suffern, NY, выпустила на рынок изделие под названием Papnet. Система Papnet представляет собой устройство, использующее принцип нейронных сетей, которое помогает специалистам цитологам диагностировать рак шейки матки более точно и, что важнее, с меньшими затратами.

До появления Papnet анализы шеечных мазков производились вручную. Лаборант рассматривал каждую пробу под микроскопом, стараясь обнаружить отдельные раковые клетки в большой массе здоровых клеток. Понятно, что наличие дефектных клеток служит индикатором рака или предракового состояния, однако во многих случаях лаборант не замечал эти клетки из-за утомления или недостаточного внимания.

В течение двадцати лет ученые пытались автоматизировать процесс обнаружения раковых клеток, используя стандартные алгоритмы выбора решающего правила. Данный подход не оправдал себя, поскольку классические алгоритмы не работали в силу большого количества и сложности параметров, которые позволяют отличить пораженные клетки от здоровых.

Papnet использует усовершенствованную систему распознавания образов, построенную на принципе нейронных сетей, и отбирает 128 наиболее «подозрительных» клеток исследуемого мазка для дальнейшей оценки специалистом-цитологом.

Использование Papnet показало очень хорошие результаты, позволяя определить дефектные клетки в 97 % случаев. Поскольку для каждой пробы лаборанту теперь приходится проверять всего 128 клеток, а не 200 или даже 500 тысяч, то влияние фактора утомления неизмеримо снизилось. Более того, время, необходимое для тестирования пробы, сократилось от пяти до десяти раз. Соответственно, процент ошибок для нового метода не превышает 3 % по сравнению с 30–50 % при ручной проверке.

Роботы второй категории представляют собой дистанционно управляемые устройства, используемые в хирургии. Такие устройства позволяют хирургу проводить операции, находясь вне непосредственного контакта с пациентом. Подобные роботы имеют уникальную систему тактильной обратной связи, позволяя хирургу непосредственно «чувствовать» органы и ткани, которые оперируются инструментами робота. Такие роботы обеспечивают хирургу возможность проводить операции практически в любой точке земного шара, не выходя, так сказать, из собственного кабинета.

К третьей категории относятся роботы, использующие принципы виртуальной реальности и изменения кратности манипулирования. При использовании такого робота движения хирурга преобразуются в движения хирургического инструмента определенным образом. Допустим, хирург переместил руку на 10 см. Компьютерная система, управляющая роботом, может преобразовать это перемещение в движение скальпеля на 1 см или даже на 1 мм. Таким образом, хирург может производить микроскопические операции, которые ранее были невозможны.

 
Купите 3 книги одновременно и выберите четвёртую в подарок!

Чтобы воспользоваться акцией, добавьте нужные книги в корзину. Сделать это можно на странице каждой книги, либо в общем списке:

  1. Нажмите на многоточие
    рядом с книгой
  2. Выберите пункт
    «Добавить в корзину»