0,05. Доказательная медицина от магии до поисков бессмертия

Текст
126
Отзывы
Читать фрагмент
Отметить прочитанной
Как читать книгу после покупки
Нет времени читать книгу?
Слушать фрагмент
0,05. Доказательная медицина от магии до поисков бессмертия
0,05. Доказательная медицина от магии до поисков бессмертия
− 20%
Купите электронную и аудиокнигу со скидкой 20%
Купить комплект за 1028  822,40 
0,05. Доказательная медицина от магии до поисков бессмертия
0,05. Доказательная медицина от магии до поисков бессмертия
Аудиокнига
Читает Александр Алехин
549 
Синхронизировано с текстом
Подробнее
Шрифт:Меньше АаБольше Аа

Зачем еще нужно ослепление

Итак, плацебо обманывает пациентов, выравнивая их ожидания, что помогает уравновесить психические эффекты в сравниваемых группах. Решает ли ослепление в клинических испытаниях еще какие-то проблемы?

Пациент – не самый надежный источник. Помимо эффектов плацебо и ноцебо, а также проявлений богатой фантазии, с которыми столкнулась комиссия Бенджамина Франклина, пациенты могут искажать информацию о своем самочувствии из вежливости или симпатии к врачам. Интервью с участниками клинических испытаний показали, что между ними и врачами могут складываться доверительные отношения, которые побуждают пациентов приукрасить улучшение своего состояния. В конце концов, как не сделать приятное человеку, который искренне заботится о твоем здоровье и, вероятно, очень переживает за успех эксперимента. Вот как описала свои чувства одна из участниц клинического исследования акупунктуры.

И тут у меня в голове возникла мысль: “Господи, а что, если они обнаружат, что это не эффективно?..” Это страшно. И мне стало жаль акупунктуристку, ведь это сделало бы бессмысленным все, чем она занимается. И это будет очень тяжело для нее. Я бы на ее месте ужасно расстроилась.

Понимая, что участвуют в эксперименте, пациенты начинают чувствовать себя частью важного процесса и даже могут испытывать чувство ответственности за успех. Ведь любой из нас предпочтет быть частью важного открытия, а не чего-то закончившегося полной неудачей. Как в такой ситуации немного не помочь врачам?

Пациенты могут искажать информацию о субъективных симптомах и по другим причинам. Например, преувеличивать их тяжесть на этапе отбора, чтобы наверняка попасть в исследование. Без контрольной группы и ослепления мы можем решить, что состояние пациентов улучшилось благодаря лечению, тогда как на самом деле они просто изначально не были настолько больны. Особенно сложно оценить, насколько адекватно описывают свои симптомы пациенты с невротическими или психотическими расстройствами. Понять, что они на самом деле чувствуют, иногда просто невозможно. К неточному описанию симптомов пациента могут подтолкнуть и сами исследователи. Если опросники для оценки изменения самочувствия построены так, что содержат множество вариантов ответа, описывающих улучшение, и лишь один описывающий ухудшение, это побуждает пациентов чаще выбирать один из положительных ответов.

Ослепление помогает предотвратить не только излишне оптимистичные результаты в экспериментальной группе, но и слишком негативные в контрольной. Если пациенты знают, что не получают лечения, эффект ноцебо может ухудшить их самочувствие. Либо они могут осознанно преувеличивать симптомы в надежде быть переведенными в группу, которой дают лекарство. Эффект ноцебо может проявиться и в экспериментальной группе. В отсутствие ослепления возможны ситуации, когда из-за воображаемых побочных эффектов состояние пациентов будет оценено ниже, чем в контрольной, и лекарство будет ошибочно признано опасным.

Еще одна роль, которую плацебо выполняет в клинических экспериментах, – предотвращение оттока пациентов из контрольной группы. Зная, что их точно не лечат, пациенты могут разбежаться или втайне от врача начать лечиться другими препаратами. В результате мы будем сравнивать изучаемое лекарство не с пустышкой, а с другим лекарством. И самое страшное: не зная, с чем именно его сравниваем, мы будем обречены на ошибочные выводы.

Впрочем, ослепление решает только часть проблемы. Есть еще один фактор, вносящий куда более серьезные искажения в результаты клинических исследований. И это – сам экспериментатор.

Двойное ослепление

Весной 1943 года Британская империя жила войной. Борьба велась на нескольких фронтах: завершалась военная кампания в Северной Африке, союзники готовились к высадке в Италии, бои шли в воздухе и на море. Не менее важную битву вели британские военные врачи. И речь не о борьбе с бактериологическим оружием и даже не о новых способах лечения ран. Они искали способ победить опаснейшего врага, сковывающего не меньше сил, чем подводные лодки Кригсмарине, и выводящего из строя не меньше солдат, чем бомбы и шрапнель.

Этим врагом было ОРЗ, острое респираторное заболевание (еще его называют ОРВИ, острой респираторной вирусной инфекцией, или в просторечии простудой). Его вызывают несколько разных возбудителей, самый распространенный из них – риновирусы. Вирусная природа заболевания была установлена только в середине 50-х годов XX века, когда появились микроскопы достаточно мощные, чтобы разглядеть этих мельчайших из известных нам живых существ.

Мы все хорошо знаем симптомы простуды: насморк, заложенный нос, слезящиеся глаза, больное горло, кашель, чихание, головная боль, иногда повышенная температура. Легко представить, какой серьезной проблемой была простуда в военные годы. Насколько хороши в бою постоянно чихающий пилот истребительной авиации, зенитчик со слезящимися глазами, кашляющий разведчик? Развешанные на заводах плакаты предупреждали:

Цена простуды и гриппа

Подумайте вот о чем.

В среднем каждый работник теряет два рабочих дня в год.

10 миллионов людей заняты в производстве для нужд фронта.

Это значит 20 миллионов потерянных дней каждый год.

Это работа 500000 людей в течение года.

Если бы треть мужчин и женщин, потерявших эти дни, делала танки, треть – бомбардировщики, а треть – ружья, то за это время они могли бы сделать:

3500 танков;

1000 бомбардировщиков;

1000000 ружей.

Вот цена для наших фронтовых усилий. Мы можем помочь уменьшить эту цену. Внесите ваш вклад в предотвращение распространения инфекции – остановите микробов носовым платком, когда кашляете или чихаете.

В 1943 году появилась надежда, что эффективное средство борьбы с врагом будет найдено. Незадолго до того против некоторых инфекций был успешно применен пенициллин, полученный из плесневого грибка Penicillium chrysogenum. Открытие подтолкнуло к экспериментам с другими выделенными из разных плесневых грибков веществами.

Вскоре одна из работавших в этом направлении групп военных медиков сообщила медицинскому журналу The Lancet о результатах успешно проведенного на флоте испытания свойств патулина – вещества, полученного из родственного грибка Penicillium patulum. Исследователи сообщили, что провели контролируемый слепой клинический эксперимент на больных простудой моряках и обнаружили, что скорость выздоровления в группе, получающей патулин, выше, чем в контрольной группе. Из 95 пациентов 45 были сочтены выздоровевшими в течение двух суток. Информация о еще неопубликованной статье просочилась в прессу, которая тут же запестрела броскими заголовками: “Более эффективен, чем пенициллин!”, “Поможет ли патулин нашим парням сражаться лучше?”

Пробная партия патулина досталась армейским врачам. Испытания поручили 26-летнему капитану Джеймсу Мэриону Стэнсфилду. Его эксперимент отличался от флотского одним важным нюансом. Стэнсфилд сразу обратил внимание, что объективно оценить, кто из пациентов выздоровел, а кто нет, не так просто. Симптомы простуды не выключаются одномоментно, они сходят на нет постепенно. С какого, например, момента считать исчезнувшим насморк? Во время флотского эксперимента врач, заполняя анкету, принимал решение по своему усмотрению. Поэтому нельзя было полностью исключить, что огромное желание флотских врачей получить положительный результат повлияло, пусть и неосознанно, на их оценку симптомов.

Стэнсфилд решил, что в его экспериментах будут ослеплены не только пациенты, но и врачи. В каждом из серии клинических испытаний он передавал врачам два флакона, один помеченный как “раствор А”, другой как “раствор В”. Врачи отчитывались о результатах лечения тем и другим, не зная, который содержал патулин, а в котором не было ничего, кроме буферного раствора[84]. Таким образом, влияние врача на оценку состояния пациента было полностью исключено. Когда эксперименты Стэнсфилда завершились, их результат разительно отличался от полученного на флоте: пациенты в обеих группах выздоравливали с одинаковой скоростью.

Имея на руках противоречивые результаты флотского и армейского исследований, под давлением прессы и общественности Совет по медицинским исследованиям Великобритании[85] собрал комиссию. Перед ней поставили задачу провести крупномасштабные испытания патулина, призванные раз и навсегда ответить на вопрос о его эффективности при простуде. Комиссию возглавили профессор Гарольд Гимсворт и доктор Филип д’Арси Харт. Через объявления в газетах они собрали около полутора тысяч простуженных добровольцев. Уже одно это было непросто: чтобы охватить как можно больше разбросанных по стране людей, исследование организовали в одиннадцати фабриках, двух школах и трех почтовых конторах. И даже добраться до незнакомого места добровольцам и специалистам бывало затруднительно: на случай вторжения нацистов некоторые железнодорожные станции были переименованы, чтобы сбить врага с толку.

 

Комиссия решила не только значительно увеличить количество участников, но и запутать врачей еще больше: теперь в исследовании сравнивали четыре группы, две из которых получали патулин, а две плацебо. Исследователи по-прежнему использовали помеченные буквами флаконы. Таким образом, ни пациенты, ни врачи не знали, кто какое лечение получает. Все время, пока шло исследование, не прекращалось давление со стороны прессы и государственных органов. В комиссию постоянно поступали запросы, каковы результаты и не пора ли готовить промышленность к массовому производству патулина. В июне 1944 года исследование наконец завершилось. Заключение гласило: “Данных, подтверждающих эффективность патулина при простуде, не получено”.

Эксперимент позволил предотвратить бессмысленную трату столь важных для фронта ресурсов на массовое производство неэффективного препарата. Деньги, не потраченные на ненужный патулин, израсходовали на другие цели, в том числе на необходимые лекарства. Патулиновое исследование повлияло на представление о том, каким должен быть хороший клинический эксперимент. Если раньше сравнительные исследования без ослепления были нормой, теперь профессионалы начали говорить о двойном ослеплении как о непременном условии.

Патулиновый эксперимент стал удивительным примером того, как множество людей – ученые, правительство, финансирующие исследование организации, производители вещества и пациенты-добровольцы, – вместе работая над достижением общей цели, смогли за очень короткое по нынешним меркам время найти ответ на важный вопрос. И выделившие патулин биохимики, и команды флотских и армейских врачей, и все те, кто участвовал в клиническом испытании, работали вместе, забыв про конкуренцию и личные амбиции. Наверное, это стало возможным потому, что война сплотила людей и как никогда мотивировала их к работе над общей целью во имя победы. Увы, в мирное время иногда побеждают другие мотивы.

Использованное в ходе патулиновых экспериментов ослепление и пациентов, и врачей получило название двойного слепого метода. Хотя он считается обязательной составляющей качественного клинического испытания, его применение не всегда возможно: например, в случае хирургического или психотерапевтического вмешательства врач всегда знает, в какой группе оказался пациент. В таких случаях необходимо разделение ролей лечащего врача и того, кто оценивает результаты лечения. Того, кто оценивает состояние пациентов, в отличие от хирурга и психотерапевта, всегда можно ослепить. Ситуацию, когда ослеплены не только врач и пациент, но и другие участники эксперимента, например тот, кто анализирует данные, иногда называют тройным ослеплением. Но поскольку существует множество возможных вариантов и техник ослепления, последняя редакция Стандарта информирования о результатах исследований CONSORT-2010 рекомендует отказаться от употребления таких терминов и заменить их подробным описанием, кто конкретно и как был ослеплен.

В отсутствие двойного ослепления искажения могут быть значительными: в среднем такие исследования преувеличивают эффективность лекарств на 15–20 %. Вопреки (а может, именно благодаря) этому двойное ослепление применяют лишь в половине клинических испытаний, где оно технически возможно. И даже в тех случаях, когда оно применяется, публикации часто не содержат описания, как именно это было сделано.

Отсутствие двойного ослепления ставит под угрозу беспристрастность оценки субъективных симптомов больных. Их оценивают на основе опросников, и, если опросник заполняет врач, его ожидания могут серьезно влиять на ответы. В первом патулиновом исследовании, проведенном на флоте и давшем ошибочный результат, врачи задавали пациентам наводящие вопросы до тех пор, пока ответ их полностью не устраивал. Вот как это описано в последовавшей за экспериментом публикации:

Как и следовало ожидать, некоторое количество людей, как получавших лечение, так и входящих в контрольную группу, решили, что они излечены, и, когда их спрашивали о самочувствии, утверждали, что симптомы болезни полностью исчезли. Более подробные расспросы в таких случаях демонстрировали, что хотя их самочувствие улучшилось, они по-прежнему страдали от незначительных выделений из носа, заложенности по утрам и т. д. Только те, кто после дополнительных вопросов и осмотра не обнаруживал никаких симптомов, засчитывались как излеченные.

Очевидно, что при таком подходе к оценке симптомов только от настойчивости врача зависит, окажется пациент здоровым или больным. Если бы исследователи ограничились письменным опросом, оценка была бы объективнее и разница между группами могла быть устранена.

И в наши дни, несмотря на все разнообразие измерительных приборов, часть данных о состоянии пациента по-прежнему собирается на глаз, на слух и на ощупь. Для таких симптомов, как хрипы в легких, покраснение или припухлость, напряженность мышц, дрожание конечностей, сухость кожи и многих других, исключить влияние врача и добиться от всех врачей одинаковой оценки невозможно. Неизбежная в таких случаях субъективность выражается еще сильнее, когда врач оценивает психическое состояние пациента: его речь, эмоции и поведение.

Человек никогда не станет беспристрастной диагностической машиной: ожидания врача всегда влияют на его выводы. В 1934 году в Нью-Йорке была отобрана тысяча одиннадцатилетних школьников, которых последовательно показали двум группам врачей. Каждая группа считала, что они единственные, кто осматривает детей. Врачи первой порекомендовали удалить миндалины у 45 % из тех, у кого они не были удалены. Вторая – у 46 % из тех, кого первая группа сочла здоровыми. Таким образом, из 389 человек с не удаленными миндалинами либо одна, либо обе группы педиатров отправили на операцию 273 ребенка. 116 школьников, чьи миндалины не были удалены до начала эксперимента и которых обе группы врачей признали здоровыми, показали еще одной группе специалистов. Уже догадываетесь, каким был результат? Третья группа направила 44 % на операцию. Ожидания педиатров, привыкших, что они находят показания к операции у определенной, привычной доли обследуемых, повлияли на интерпретацию увиденного больше, чем реальное состояние миндалин. Кстати, позднее столь частое удаление миндалин перестали считать оправданным, и сейчас в США через эту операцию проходит не более 1 % детей.

Приборные исследования тоже не гарантируют объективности. Представление, что их результаты можно всегда однозначно интерпретировать и разница в выводах вызвана только тем, что один врач опытнее другого, глубоко ошибочно. Везде, где в оценке результатов участвует человек, субъективность неизбежна. В первую очередь это касается таких методов исследования, как рентгеновские снимки, УЗИ, КТ, МРТ, гистологические исследования. Разные врачи будут делать разные выводы из одного и того же снимка, и это не значит, что один хуже другого. Более того, один и тот же врач может по-разному интерпретировать тот же снимок, если оценивает его более одного раза.

В 2005 году были опубликованы результаты проведенного в Самаре исследования. 101 врач, в том числе рентгенологи и специалисты по заболеваниям дыхательных путей, просматривал 50 высококачественных рентгеновских снимков легких: 37 снимков пациентов с подтвержденными другими методами легочными заболеваниями, включая туберкулез, и 13 снимков здоровых людей. Снимки показывали по очереди, не сопровождая какими-либо комментариями. Иногда через несколько дней врачу без предупреждения показывали снимок, который он уже оценивал раньше. Уровень согласия между специалистами оказался невысок: во многих случаях они давали прямо противоположные заключения. Это расхождение мало зависело от опыта врача и касалось снимков как больных, так и здоровых людей. Более того, одни и те же врачи в разные дни делали противоположные выводы по одним и тем же снимкам.

Таким образом, ослепление того, кто оценивает состояние пациента, исключает осознанное или неосознанное завышение результатов в экспериментальной и занижение в контрольной группе. Помимо этого не ослепленный врач может:

• дать пациенту понять, в какой группе тот находится (последствия мы обсудили в предыдущей главе);

• влиять на результаты, назначая разное дополнительное лечение пациентам в разных группах;

• избирательно удалять из исследования самых тяжелых или, наоборот, самых здоровых пациентов, завышая средний результат экспериментальной группы или занижая результат контрольной.

Субъективные искажения проявляются ярче там, где для описания симптомов используются слова. В силу многозначности и неопределенности человеческого языка они могут быть интерпретированы по-разному. Хотя ослепление не устраняет этих искажений, оно помогает равномерно распределить их между сравниваемыми группами. Однако широкий круг медицинских проблем в принципе не может быть решен, если у нас нет способа избавиться от многозначности. Пусть и не сразу, но медицина осознала это и начала учиться говорить на новом, более точном языке – языке чисел.

Глава 6
Числа

Измерения

Одной из причин прорыва в понимании окружающего мира в XVI–XVIII веке, когда были заложены основы современных химии, физики и астрономии, стал переход от теоретических спекуляций к практическим экспериментам и измерениям. Место словесных баталий схоластов постепенно занимал точный язык математики. Яркий пример того, как союз с ней менял науку, – судьба флогистона. Корни этой идеи можно обнаружить в теориях алхимика Иоганна Бехера. В конце XVII века он описал свое видение устройства мира, взяв за основу древнегреческую концепцию элементов, но предложив вместо четырех греческих субстанций три своих. Одна из них, по мысли Бехера, отвечала за процесс горения. Его последователь Георг Шталь назвал ее флогистоном.

Шталь утверждал, что флогистон содержится во всех горючих субстанциях, а процесс горения – не что иное, как выход флогистона из горящего предмета в окружающий воздух. Например, дерево, по его мнению, состояло из флогистона и угля и распадалось на них, когда горело. Быстрое прекращение горения в замкнутом пространстве Шталь объяснял тем, что воздух может поглотить лишь ограниченное количество флогистона, быстро насыщается в замкнутом пространстве и дальнейшее выделение флогистона становится невозможным. Эта теория оставалась основной концепцией горения более ста лет. Почти никого не смущало, что ее сторонники не предъявляют никаких доказательств. Внутренней непротиворечивости идеи было достаточно, чтобы ее преподавали в университетах как нечто само собой разумеющееся.

Флогистон утратил свои позиции только благодаря сопровождавшимся измерениями экспериментам. Взвешивание горючих металлов, таких как натрий, калий и магний, показало, что их вес после горения увеличивается, а не уменьшается. Поэтому разумнее было предположить, что, горя, они поглощают, а не выделяют некоторое вещество. Однако флогистон был готов сражаться до последнего живого сторонника, и в качестве встречного аргумента прозвучала идея, что у флогистона отрицательный вес. Тех, кто отстаивал теорию, не смущал даже тот факт, что ни одного объекта с отрицательным весом никто еще не видел. Последний гвоздь в крышку гроба забил Антуан Лавуазье, тот самый химик, в чьем доме комиссия под руководством Бенджамина Франклина проводила экспериментальную проверку месмеризма. Путем опытов в закрытых сосудах Лавуазье показал, что для горения требуется имеющий определенную массу газ.

Переход на язык чисел позволил добиться значимых успехов в физике, астрономии и механике, но медицина оставалась от этой числовой революции в стороне. Врачи не спешили использовать математику. Конечно, всегда были отдельные исключения. Например, Эрасистрату, помимо создания приборов для измерения пульса и объема дыхания, приписывают и любопытные эксперименты с птицами. Он переставал их кормить, а затем измерял и фиксировал их вес, а также вес выделяемых ими экскрементов. Поскольку суммарная потеря веса была больше, чем вес птичьего помета, Эрасистрат абсолютно верно предположил существование неких “невидимых эманаций”. Он бы не смог прийти к этой опережающей время гипотезе без помощи математики, полагаясь лишь на чувства и размышления.

Увы, интерес александрийцев к измерениям постигла та же судьба, что и анатомические вскрытия. Причины были те же: невозможность извлечь из измерений практическую пользу и отсутствие в интеллектуальной культуре того времени идеи, что числа имеют большую ценность, чем философские рассуждения. Только к XVII веку начали звучать голоса считавших, что для прогресса медицине необходимо перенять опыт других областей знания. Итальянский врач Джоржо Бальиви в 1696 году призывал врачей следовать примеру астрономов.

 

Астрономы разработали множество систем, описывающих небеса: птолемееву, коперникову, геогелиоцентрическую, полугеогелиоцентрическую – и все они противоречат друг другу. Но в том, что касается предсказания положения небесных тел, их мнения нисколько не расходятся… ведь какую бы особенную Теорию Звезд ни придумал очередной астроном, она будет опираться на те же наблюдения и измерения, что у остальных.

Благодаря измерениям и экспериментам были опровергнуты старые представления о кровеносной системе. Гален утверждал, что кровь образуется из пищи в печени, откуда разносится по всему телу и поглощается им, то есть каждая пульсация сердца гонит по телу новую кровь. Ошибка была исправлена в XVII веке британским врачом Уильямом Гарвеем. Несложные расчеты показали, что Гален никак не может быть прав. Гарвей определил, что сердце за один раз может пропустить через себя не более восьмидесяти миллилитров крови. За полчаса оно сокращается более двух тысяч раз. Если считать, что вся выталкиваемая сердцем кровь создается заново, то за полчаса организм должен произвести из пищи не менее 100 литров жидкости. Очевидно, что такому количеству крови неоткуда взяться. Более того, в теле содержится примерно 4 литра крови, куда же тогда девается остальная? Единственное возможное объяснение заключалось в том, что ограниченный, относительно небольшой объем крови циркулирует по замкнутой системе. Благодаря расчетам Гарвей пришел к правильным выводам задолго до того, как замкнутость кровеносной системы была подтверждена анатомически.

Гарвей провел сотни экспериментов на животных и исправил множество старых ошибок. Так, Гален считал, что активная фаза сердца – фаза расширения, когда кровь всасывается в правый желудочек. Гарвей же, сделав на бьющемся сердце надрез, наблюдал, как одновременно с сокращениями кровь толчками выбрасывается и из сердца, и из надрезов на артериях – значит, сердце работает как насос, который, сокращаясь, выталкивает кровь в сосуды. Ранее считалось, что между левым и правым желудочками сердца существует отверстие. Но Гарвей закачал воду в идущие к сердцу вены и наблюдал за ее движением, определив таким образом, что правый и левый желудочек соединены только через легочной круг кровообращения.

Некоторые давние заблуждения были исправлены при помощи совсем простых экспериментов. Гален утверждал, что вены несут кровь от сердца. Накладывая на конечности давящие повязки, Гарвей показал, что артерии перестают пульсировать ниже повязки и сохраняют пульсацию выше ее. Когда он немного ослаблял повязку, кровь поступала в конечность через артерии, которые расположены глубже, но не могла покинуть ее через поверхностно расположенные вены, по-прежнему сжатые повязкой. Было видно, как рука опухает и наполняется кровью, а значит, кровь движется по артериям от сердца к периферии, а по венам к сердцу. Ничто не мешало Галену провести этот опыт. Вероятно, ему даже не приходило в голову, что он должен как-то подтвердить свою теорию. Понадобилось полторы тысячи лет, чтобы числовой метод и эксперименты стали принимать всерьез, а вес авторитетов ослабел.

84Раствор, pH которого мало меняется при добавлении в него кислот или щелочей. Используется, когда важно сохранять pH неизменным. В данном случае выделившие патулин биохимики требовали неизменного pH в растворе для сохранения свойств патулина.
85Совет по медицинским исследованиям – государственная организация в Великобритании, отвечающая за координацию и финансирование исследований лекарств.
Бесплатный фрагмент закончился. Хотите читать дальше?
Купите 3 книги одновременно и выберите четвёртую в подарок!

Чтобы воспользоваться акцией, добавьте нужные книги в корзину. Сделать это можно на странице каждой книги, либо в общем списке:

  1. Нажмите на многоточие
    рядом с книгой
  2. Выберите пункт
    «Добавить в корзину»